2021-2022学年度沪教版七年级数学第二学期第十四章三角形月考试题(无超纲).docx
-
资源ID:28150161
资源大小:1.08MB
全文页数:34页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年度沪教版七年级数学第二学期第十四章三角形月考试题(无超纲).docx
沪教版七年级数学第二学期第十四章三角形月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将三根木条钉成一个三角形木架,这个三角形木架具有稳定性.解释这个现象的数学原理是( )ASSSBSASCASADAAS2、有两边相等的三角形的两边长为,则它的周长为( )ABCD或3、如图,AC,BD相交于点O添加一个条件,不一定能使的是( )ABCD4、在下列长度的四根木棒中,能与3cm,9cm的两根木棒首尾顺次相接钉成一个三角形的是( )A3cmB6cmC10cmD12cm5、若三条线段中a3,b5,c为奇数,那么以a、b、c为边组成的三角形共有( )A1个B2个C3个D4个6、一副三角板如图放置,点A在DF的延长线上,DBAC90°,E30°,C45°,若BC/DA,则ABF的度数为()A15°B20°C25°D30°7、满足下列条件的两个三角形不一定全等的是( )A周长相等的两个三角形B有一腰和底边对应相等的两个等腰三角形C三边都对应相等的两个三角形D两条直角边对应相等的两个直角三角形8、已知三角形的两边长分别是3cm和7cm,则下列长度的线段中能作为第三边的是()A3cmB4cmC7cmD10cm9、如果三角形一边上的中线等于这条边的一半,那么这个三角形一定是( )A锐角三角形B直角三角形C钝角三角形D等腰三角形10、已知:如图,D、E分别在AB、AC上,若ABAC,ADAE,A60°,B25°,则BDC的度数是()A95°B90°C85°D80°第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知直角三角形ABC的三条边长分别为3,4,5,在ABC所在平面内画一条直线,将ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画_条2、在等腰ABC中,A40°,则B_°3、如图,_4、如图,点G分别为AD与CF的中点,若,则AC=_5、如图,正三角形ABC中,D是AB的中点,于点E,过点E作与BC交于点F若,则的周长为_三、解答题(10小题,每小题5分,共计50分)1、如图,将ABC绕点A逆时针旋转得到ADE,点D在BC上,已知B70°,求CDE的大小2、如图,灯塔B在灯塔A的正东方向,且灯塔C在灯塔A的北偏东20°方向,灯塔C在灯塔B的北偏西50°方向(1)求的度数;(2)一轮船从B地出发向北偏西50°方向匀速行驶,5h后到达C地,求轮船的速度3、已知AMCN,点B在直线AM、CN之间,ABBC于点B(1)如图1,请直接写出A和C之间的数量关系: (2)如图2,A和C满足怎样的数量关系?请说明理由(3)如图3,AE平分MAB,CH平分NCB,AE与CH交于点G,则AGH的度数为 4、如图,在中,AD是角平分线,E是AB边上一点,连接ED,CB是的平分线,ED的延长线与CF交于点F(1)求证:;(2)若,则_度5、如图,在中,是的平分线,点在边上,且()求证:;()若,求的大小6、数学课上,王老师布置如下任务:如图,已知MAN45°,点B是射线AM上的一个定点,在射线AN上求作点C,使ACB2A下面是小路设计的尺规作图过程作法:作线段AB的垂直平分线l,直线l交射线AN于点D;以点B为圆心,BD长为半径作弧,交射线AN于另一点C,则点C即为所求根据小路设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明:证明:连接BD,BC,直线l为线段AB的垂直平分线,DA ,( )(填推理的依据)AABD,BDCAABD2ABCBD,ACB ,( )(填推理的依据)ACB2A7、已知:直线AB、CR被直线UV所截,直线UV交直线AB于点B,交直线CR于点D,ABU+CDV180°(1)如图1,求证:ABCD;(2)如图2,BEDF,MEBABE+5°,FDR35°,求MEB的度数;(3)如图3,在(2)的条件下,点N在直线AB上,分别连接EN、ED,MGEN,连接ME,GMEGEM,EBD2NEG,EB平分DEN,MHUV于点H,若EDCCDB,求GMH的度数8、在等腰中,点D是BC边上的一个动点(点D不与点B,C重合),连接AD,作等腰,使,点D,E在直线AC两旁,连接CE(1)如图1,当时,直接写出BC与CE的位置关系;(2)如图2,当时,过点A作于点F,请你在图2中补全图形,用等式表示线段BD,CD,之间的数量关系,并证明9、直线l经过点A,在直线l上方,(1)如图1,过点B,C作直线l的垂线,垂足分别为D、E求证:(2)如图2,D,A,E三点在直线l上,若(为任意锐角或钝角),猜想线段DE、BD、CE有何数量关系?并给出证明(3)如图3,过点B作直线l上的垂线,垂足为F,点D是BF延长线上的一个动点,连结AD,作,使得,连结DE,CE直线l与CE交于点G求证:G是CE的中点10、如图,点B,F,C,E在一条直线上,AB=DE,B=E,BF=CE求证:AC=DF-参考答案-一、单选题1、A【分析】根据三根木条即为三角形的三边长,利用全等三角形判定定理确定唯一三角形即可得【详解】解:三根木条即为三角形的三边长,即为利用确定三角形,故选:A【点睛】题目主要考查利用全等三角形判定确定唯一三角形,熟练掌握全等三角形的判定是解题关键2、D【分析】有两边相等的三角形,是等腰三角形,两边分别为和,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论【详解】解:当4为底时,其它两边都为5,4、5、5可以构成三角形,周长为;当4为腰时,其它两边为4和5,4、4、5可以构成三角形,周长为综上所述,该等腰三角形的周长是或故选:D【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题的关键是对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论3、C【分析】直接利用直角三角形全等的判定定理(定理)即可判断选项;先根据等腰三角形的性质可得,再根据三角形全等的判定定理(定理)即可判断选项;直接利用三角形全等的判定定理(定理)即可判断选项,由此即可得出答案【详解】解:当添加条件是时,在和中,则选项不符题意;当添加条件是时,在和中,则选项不符题意;当添加条件是时,在和中,则选项不符题意;当添加条件是时,不一定能使,则选项符合题意;故选:C【点睛】本题考查了三角形全等的判定、等腰三角形的性质,熟练掌握三角形全等的判定方法是解题关键4、C【分析】设第三根木棒的长度为cm,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.【详解】解:设第三根木棒的长度为cm,则 所以A,B,D不符合题意,C符合题意,故选C【点睛】本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.5、C【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数【详解】解:c的范围是:53c5+3,即2c8c是奇数,c3或5或7,有3个值则对应的三角形有3个故选:C【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键6、A【分析】先求出EFD=60°,ABC=45°,由BCAD,得到EFD=FBC=60°,则ABF=FBC-ABC=15°【详解】解:DBAC90°,E30°,C45°,EFD=60°,ABC=45°,BCAD,EFD=FBC=60°,ABF=FBC-ABC=15°,故选A【点睛】本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键7、A【分析】根据全等三角形的判定方法求解即可判定三角形全等的方法有:SSS,SAS对各选项进行一一判断即可【详解】解:A、周长相等的两个三角形不一定全等,符合题意; B、有一腰和底边对应相等的两个等腰三角形根据三边对应相等判定定理可判定全等,不符合题意;C、三边都对应相等的两个三角形根据三边对应相等判定定理可判定全等,不符合题意;D、两条直角边对应相等的两个直角三角形根据SAS判定定理可判定全等,不符合题意故选:A【点睛】此题考查了全等三角形的判定方法,解题的关键是熟练掌握全等三角形的判定方法判定三角形全等的方法有:SSS,SAS,AAS,ASA,HL(直角三角形)8、C【分析】设三角形第三边的长为x cm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可【详解】解:设三角形的第三边是xcm则7-3x7+3即4x10,四个选项中,只有选项C符合题意,故选:C【点睛】本题主要考查了三角形三边关系的应用此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可9、B【分析】根据题意画出图形,利用等腰三角形的性质及三角形内角和定理即可得到答案【详解】如图,在ABC中,CD是边AB上的中线AD=CD=BDA=DCA,B=DCBA+ACB+B=180° A+DCA+DCB+B=180即2A+2B=180°A+B=90°ACB=90°ABC是直角三角形故选:B【点睛】本题考查了等腰三角形的性质及三角形内角和定理,熟练运用这两个知识是关键10、C【分析】根据SAS证ABEACD,推出CB,求出C的度数,根据三角形的外角性质得出BDCA+C,代入求出即可【详解】解:在ABE和ACD中,ABEACD(SAS),CB,B25°,C25°,A60°,BDCA+C85°,故选C【点睛】本题主要考查了全等三角形的性质与判定,三角形外角的性质,解题的关键在于能够熟练掌握全等三角形的性质与判定条件二、填空题1、6【分析】根据等腰三角形的性质分别利用AB,AC为底以及为腰得出符合题意的图形即可【详解】解:如图所示:当BC2=CC2,AC1=AC,BC=BC3,BC=CC4,BC=CC5,C6A=C6B都能得到符合题意的等腰三角形故答案为:6【点睛】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键2、40°或70°或100°【分析】本题要分两种情况讨论:当A=40°为顶角;当A=40°为底角时,则B为底角时或顶角然后求出B【详解】分两种情况讨论:当A=40°为顶角时,;当A=40°为底角时,B为底角时B=A=40°;B为顶角时B=180°AC=180°40°40°=100°故答案为:40°或70°或100°【点睛】本题考查等腰三角形的性质,解题的关键是掌握等腰三角形的性质,分情况讨论问题.3、180度【分析】如图,连接 记的交点为 先证明再利用三角形的内角和定理可得答案.【详解】解:如图,连接 记的交点为 故答案为:【点睛】本题考查的是三角形的内角和定理,作出合适的辅助线构建三角形是解本题的关键.4、4【分析】根据SAS证明,由全等三角形的性质得,由,得,推出,都是等腰三角形,故得,设,则,列出等量关系式解出,即可得出【详解】点G分别为AD与CF的中点,都是等腰三角形,设,则,解得:,故答案为:4【点睛】本题考查全等三角形的判定与性质,等腰三角形的判定与性质,根据题意找出关系式是解题的关键5、18【分析】利用正三角形ABC以及平行关系,求出是等边三角形,在中,利用含角的直角三角形的性质,求出的长,进而得到长,最后即可求出的周长【详解】解:是等边三角形,为等边三角形,由于D是AB的中点,故,,在中,,故答案为:18【点睛】本题主要是考查了等边三角形的判定及性质、含角的直角三角形的性质,熟练地综合应用等边三角形和含角的直角三角形的性质求解边长,是解决该题的关键三、解答题1、【分析】先由旋转的性质证明再利用等边对等角证明从而可得答案.【详解】解: 把ABC绕点A逆时针旋转得到ADE,B70°, 【点睛】本题考查的是旋转的性质,等腰三角形的性质,掌握“旋转前后的对应角相等与等边对等角”是解本题的关键.2、(1)70°;(2)15km/h【分析】(1)根据题意得BAC=70°,ABC=40°,根据三角形的内角和定理即可求得ACB;(2)根据等腰三角形的判定可得BC=AB=75km,进而由速度=路程÷时间求解即可【详解】解:(1)根据题意得BAC=70°,ABC=40°,ACB=180°BACABC=180°70°40°=70°;(2)BAC=ACB=70°,BC=AB=75km,轮船的速度为75÷5=15(km/h)【点睛】本题考查方位角、等腰三角形的判定、三角形的内角和定理,理解方位角,熟练掌握等腰三角形的等角对等边是解答的关键3、(1)A+C90°;(2)CA90°,见解析;(3)45°【分析】(1)过点B作BEAM,利用平行线的性质即可求得结论;(2)过点B作BEAM,利用平行线的性质即可求得结论;(3)利用(2)的结论和三角形的外角等于和它不相邻的两个内角的和即可求得结论【详解】(1)过点B作BEAM,如图,BEAM,AABE,BEAM,AMCN,BECN,CCBE,ABBC,ABC90°,A+CABE+CBEABC90°故答案为:A+C90°;(2)A和C满足:CA90°理由:过点B作BEAM,如图,BEAM,AABE,BEAM,AMCN,BECN,C+CBE180°,CBE180°C,ABBC,ABC90°,ABE+CBE90°,A+180°C90°,CA90°;(3)设CH与AB交于点F,如图,AE平分MAB,GAFMAB,CH平分NCB,BCFBCN,B90°,BFC90°BCF,AFGBFC,AFG90°BCFAGHGAF+AFG,AGHMAB+90°BCN90°(BCNMAB)由(2)知:BCNMAB90°,AGH90°45°45°故答案为:45°【点睛】本题考查平行线的性质以及三角形外角的性质,由题作出辅助线是解题的关键4、(1)见解析,(2)46【分析】(1)根据等腰三角形的性质和角平分线得到BACBBCF,由AD是角平分线,得到BDCD,证BDECDF即可;(2)根据全等三角形的性质得到DEDFDA,根据求得DAB,进而求出B的度数即可【详解】(1)证明:,BACB,CB是的平分线,ACBBCF,BBCF,AD是角平分线,ABAC,BDCD,BDECDF,BDECDF(AAS);(2)BDECDF;EDFD,,EDAD,BACBBCF23°,故答案为:46【点睛】本题考查了等腰三角形的性质和全等三角形的判定与性质,解题关键是熟练运用相关知识进行推理证明和计算5、()见解析;()【分析】()由CD是的平分线得出,由得出从而得出,由平行线的判断即可得证;()由三角形内角和求出,由角平分线得出,由三角形内角和求出即可得出答案【详解】()CD是的平分线,;(),【点睛】本题考查平行线的判定以及三角形内角和定理,掌握相关知识是解题的关键6、(1)见解析;(2)DB;线段垂直平分线上的点到线段两端的距离相等;BDC; 等边对等角【分析】(1)根据题目中的小路的尺规作图过程,直接作图即可(2)根据垂直平分线的性质以及等边对等角进行解答即可【详解】解:(1) 根据题目中的小路的设计步骤,补全的图形如图所示; (2)解:证明:连接BD,BC,直线l为线段AB的垂直平分线,DA DB ,(线段垂直平分线上的点到线段两端的距离相等)(填推理的依据)AABD,BDCAABD2ABCBD,ACBBDC ,(等边对等角)(填推理的依据)ACB2A【点睛】本题主要是考查了尺规作图能力以及垂直平分线和等边对等角的性质,熟练掌握垂直平分线和等边对等角的性质,是解决该题的关键7、(1)见详解;(2)MEB40°,(3)GMH=80°【分析】(1)根据等角的补角性质得出ABD=CDV,根据同位角相等两直线平行可得ABCD;(2)根据ABCD;利用内错角相等得出ABD=RDB,根据BEDF,得出EBD=FDB,利用等量减等量差相等得出ABE=FDR,根据FDR35°,可得ABE=FDR=35°即可;(3)设ME交AB于S,根据MGEN,得出NES=GMS=GES,设NES=y°,可得NEG=NES+GES=2NES=2y°,根据EBD2NEG,得出EBD =4NES=4y°,根据EDCCDB,设EDC=x°,得出CDB=7x°,根据ABCD,得出GBE+EBD+CDB=180°,可得35+4y+7x=180根据三角形内角和BDE=BDC-EDC=7x-x=6x,BED=180°-EBD-EDB=180°-4y°-6x°,利用EB平分DEN,得出y°+40°=180°-4y°-6x°,解方程组,解得,可证MEUV,根据MHUV,可求SMH=90°,SMG=NES=10°即可【详解】(1)证明:ABU+ABD=180°,ABU+CDV180°ABU=180°-ABD,CDV180°-ABU,ABD=CDV,ABCD;(2)解:ABCD;ABD=RDB,ABE+EBD=FDB+FDR,BEDF,EBD=FDB,ABE=FDR,FDR35°,ABE=FDR=35°,MEBABE+5°=35°+5°=40°,(3)解:设ME交AB于S,MGEN,NES=GMS=GES,设NES=y°,EBD2NEGNEG=NES+GES=2NES=2y°,EBD =4NES=4y°,EDCCDB,设EDC=x°CDB=7x°,ABCD,ABD+CDB=180°,即GBE+EBD+CDB=180°,35+4y+7x=180,BDE=BDC-EDC=7x-x=6x,BED=180°-EBD-EDB=180°-4y°-6x°,EB平分DEN,NEB=BED,NEB=NES+SEB=y°+40°,y°+40°=180°-4y°-6x°,解得,EBD=4y°=40°=MEB,MEUV,MHUV,MHME,SMH=90°,SMG=NES=10°,GMH=90°-SMG=90°-10°=80°【点睛】本题考查平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组,掌握平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组是解题关键8、(1)(2)或,见解析【分析】(1)根据已知条件求出B=ACB=45°,证明BADCAE,得到ACE=B=45°,求出BCE=ACB+ACE=90°,即可得到结论;(2)根据题意作图即可,证明得到,推出延长EF到点G,使,证明,推出由此得到同理可证(1)解:,B=ACB=45°,即BAD=CAE,BADCAE,ACE=B=45°,BCE=ACB+ACE=90°,;(2)解:如图,补全图形;证明:,又,延长EF到点G,使,如图,同理可证【点睛】此题考查了全等三角形的判定及性质,等腰三角形的性质,熟记全等三角形的判定及性质是解题的关键掌握分类思想解题是难点9、(1)见解析;(2)猜想:,见解析;(3)见解析【分析】(1)先证明和,再根据证明即可;(2)根据AAS证明得,进一步可得出结论;(3)分别过点C、E作,同(1)可证,得出CM=EN,证明得,从而可得结论【详解】解:(1)证明:,在与中,(2)猜想:,在与中,(3)分别过点C、E作,同(1)可证, 在与中,G为CE的中点【点睛】本题考查了全等三角形的判定与性质、垂线的定义、角的互余关系,证得ABDCAE是解决问题的关键10、见解析【分析】先由BF=CE说明BC= EF然后运用SAS证明ABCDEF,最后运用全等三角形的性质即可证明【详解】证明:BF= CE, BC= EF 在ABC和DEF中,ABCDEF(SAS) AC=DF【点睛】本题主要考查了全等三角形的判定与性质,正确证明ABCDEF是解答本题的关键