2021-2022学年人教版初中数学七年级下册-第六章实数章节测试练习题(无超纲).docx
-
资源ID:28150218
资源大小:251.10KB
全文页数:16页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年人教版初中数学七年级下册-第六章实数章节测试练习题(无超纲).docx
初中数学七年级下册 第六章实数章节测试(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、的值等于( )AB2CD22、估算的值是在( )之间A5和6B6和7C7和8D8和93、下列各组数中相等的是( )A和3.14B25%和C和0.625D13.2%和1.324、三个实数,2,之间的大小关系()A2B2C2D25、下列等式正确的是( )ABCD6、在下列各数,3.1415926,0.,0.2020020002(每两个2之间依次多1个0)中无理数的个数有()A1个B2个C3个D4个7、下列各数是无理数的是()ABCD8、下列各数中,3.1415,0.321,2.32232223(相邻两个3之间的2的个数逐次增加1),无理数有( )A0个B1个C2个D3个9、下列命题中,是假命题的是()A平面内,若ab,ac,那么bcB两直线平行,同位角相等C负数的平方根是负数D若,则ab10、下列语句正确的是()A8的立方根是2B3是27的立方根C的立方根是±D(1)2的立方根是1二、填空题(5小题,每小题4分,共计20分)1、若a、b为实数,且,则ab的值_2、已知4321849,4421936,4522025,4622116,若n为整数,且nn+1,则n的值为 _3、已知,则|x3|x1|_4、若,则_5、计算:203_三、解答题(5小题,每小题10分,共计50分)1、做一个底面积为24cm2,长、宽、高的比为4:2:1的长方体,求这个长方体的长、宽、高分别是多少cm?2、已知一个数的两个不同的平方根分别是2a5和1a,8b的立方根是4(1)求这个正数;(2)求2a+b的算术平方根3、求下列各式中x的值:(1) ; (2)4、任何实数a,可用a表示不超过a的最大整数,如4=4,=1现对72进行如下操作:72第一次=8,第二次=2,第三次=1,这样对72只需进行3次操作变为1(1)对10进行1次操作后变为_,对200进行3次作后变为_;(2)对实数m恰进行2次操作后变成1,则m最小可以取到_;(3)若正整数m进行3次操作后变为1,求m的最大值5、求下列各式中x的值:(1); (2)-参考答案-一、单选题1、D【分析】由于表示4的算术平方根,由此即可得到结果【详解】解:4的算术平方根为2,的值为2故选D【点睛】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误弄清概念是解决本题的关键2、C【分析】根据题意可知判断的值在5、6、7、8、9哪个数之间,即的值在2、3、4、5、6哪个数之间,2、3、4、5、6可表示为,显然,即,故【详解】故选:C【点睛】本题考查了算术平方根估计范围,将先看作进行比较,再加上3是解题的关键3、B【分析】是一个无限不循环小数,约等于3.142,3.1423.14,即3.14;1÷40.25,把0.25的小数点向右移动两位添上百分号就是25%;即25%;3÷80.375,0.3750.625,即0.625;把13.2%小数点向左移动两位去掉百分号就是0.132,0.1321.32,即13.2%1.32【详解】解:A 、3.142,3.1423.14,即3.14;B 、1÷40.2525%;C 、3÷80.375,0.3750.625,即0.625;D 、13.2%0.132,0.1321.32,即13.2%1.32故选:B【点睛】此题主要是考查小数、分数、百分数的互化及圆周率的限值小数、分数、百分数、无限小数(循环小数)的大小比较,通常都化成保留一定位数的小数,再根据小数的大小比较方法进行比较,这样可以省去通分的麻烦4、A【分析】,根据被开方数的大小即判断这三个数的大小关系【详解】2故选A【点睛】本题考查了实数大小比较,掌握无理数的估算是解题的关键5、C【分析】根据算术平方根的定义和性质,立方根的定义逐项分析判断即可【详解】A. ,故该选项不正确,不符合题意;B. 无意义,故该选项不正确,不符合题意; C. ,故该选项正确,符合题意;D. ,故该选项不正确,不符合题意;故选C【点睛】本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数) 其中属于非负数的平方根称之为算术平方根;立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数)6、C【分析】根据无理数的概念求解即可【详解】解:,0.2020020002(每两个2之间依次多1个0)是无理数,其它是有理数,故无理数一共有3个,故选:C【点睛】此题考查了无理数的概念,解题的关键是熟练掌握无理数的概念无理数:无限不循环小数7、C【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】解:A,是整数,属于有理数,故本选项不合题意;B,是整数,属于有理数,故本选项不合题意;C是无理数,故本选项符合题意;D是分数,属于有理数,故本选项不合题意;故选:C【点睛】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001,等有这样规律的数8、D【分析】理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】3.1415,0.321是有限小数,属于有理数;是分数,属于有理数;无理数有,2.32232223(相邻两个3之间的2的个数逐次增加1),共3个故选:D【点睛】此题考查了无理数解题的关键是掌握实数的分类9、C【详解】根据平行线的性质、平方根的概念、算术平方根的概念判断即可【解答】解:A、平面内,若ab,ac,那么bc,是真命题,不符合题意;B、两直线平行,同位角相等,是真命题,不符合题意;C、负数没有平方根,故本说法是假命题,符合题意;D、若,则ab,是真命题,不符合题意;故选C【点睛】本题主要考查了平行线的性质,平方根和算术平方根的定义,熟知相关知识是解题的关键10、A【分析】利用立方根的运算法则,进行判断分析即可【详解】解:A、8的立方根是2,故A正确B、3是27的立方根,故B错误C、的立方根是,故C错误D、(1)2的立方根是1,故D错误故选:A【点睛】本题主要是考查了立方根的运算,注意一个数的立方根只有一个,不是以相反数形式存在的二、填空题1、3【解析】【分析】根据平方的非负性及算术平方根的非负性求出a及b的值,代入计算即可【详解】解:,=3,故答案为:3【点睛】此题考查了平方的非负性及算术平方根的非负性,以及实数的乘方运算,正确掌握平方的非负性及算术平方根的非负性是解题的关键2、44【解析】【分析】由已知条件的提示可得,即,从而可得答案【详解】解:,即 又,n为整数,故答案为:44【点睛】本题考查的是无理数的估算,掌握无理数的估算方法是解题的关键3、2【解析】【分析】得出x-30,x-1>0,再利用绝对值的代数意义去括号合并即可得到结果【详解】解:,12,23,x-30,x-1>0,|x3|x-1|=3-x+(x-1)=3-x+x-1=2故答案为:2【点睛】本题考查了整式的加减运算,涉及的知识有:无理数的估算,绝对值的代数意义,数轴,去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键4、【解析】【分析】根据算术平方根的非负性及平方的非负性求出x及y的值,代入计算即可【详解】解:,且,x-2=0,y+3=0,x=2,y=-3,故答案为:-6【点睛】此题考查了有理数的乘法计算,正确掌握算术平方根的非负性及平方的非负性求出x及y的值是解题的关键5、【解析】【分析】直接根据算术平方根,绝对值,实数的运算法则计算即可【详解】解:原式,故答案为:【点睛】本题考查了算术平方根,绝对值,实数的运算,本题比较简单,属于基础题三、解答题1、这个长方体的长、宽、高分别为、【解析】【分析】根据题意设这个长方体的长、宽、高分别为4x、2x、x,然后依据底面积为24cm2,列出关于x的方程,然后可求得x的值,最后再求得这个长方体的长、宽、高即可【详解】解:设这个长方体的长、宽、高分别为4x、2x、x根据题意得:4x2x24,解得:x或x(舍去)则4x4,2x2所以这个长方体的长、宽、高分别为4cm、2cm、cm【点睛】本题主要考查的是算术平方根的定义,熟练掌握算术平方根的定义是解题的关键2、(1)9;(2)0【解析】【分析】(1)根据一个正数的两个平方根互为相反数计算即可;(2)根据立方根的性质求出b,结合(1)中的a计算即可;【详解】(1)一个数的两个不同的平方根分别是2a5和1a,一个数的两个不同的平方根分别是,这个正数是9(2)8b的立方根是4,2a+b的算术平方根0【点睛】本题主要考查了平方根的性质,算术平方根的计算,立方根的性质,准确计算是解题的关键3、(1);(2)【解析】【分析】(1)首先把121移到等号右边,然后两边同时开平方即可求解;(2)首先把8移到等号右边,然后再两边同时开立方即可求解【详解】解:(1),;(2),【点睛】此题主要考查了平方根和立方根,关键是掌握如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根;如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根4、(1)3;1;(2);(3)的最大值为255【解析】【详解】解:(1),对10进行1次操作后变为3;同理可得,同理可得,同理可得,对200进行3次作后变为1,故答案为:3;1;(2)设m进行第一次操作后的数为x,要经过两次操作故答案为:(3)设m经过第一次操作后的数为n,经过第二次操作后的数为x,要经过3次操作,故是整数的最大值为255【点睛】本题考查取整函数及无理数的估计,正确理解取整含义是求解本题的关键5、(1);(2)【解析】【分析】(1)根据平方根的定义求解;(2)根据立方根的定义求解【详解】解:(1)原方程可变形为:,;(2)原方程可变形为:=8,x+1=2,x=1【点睛】本题考查了平方根,立方根,注意一个正数的平方根有2个,不要漏解