2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十二章实数综合练习试题(精选).docx
-
资源ID:28150265
资源大小:327.26KB
全文页数:20页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十二章实数综合练习试题(精选).docx
沪教版(上海)七年级数学第二学期第十二章实数综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、三个实数,2,之间的大小关系()A2B2C2D22、下列各数,其中无理数的个数有()A4个B3个C2个D1个3、在以下实数:,3.1411,8,0.020020002中,无理数有()A2个B3个C4个D5个4、若与互为相反数,则a、b的值为( )ABCD5、平方根和立方根都等于它本身的数是( )A±1B1C0D16、9的平方根是()A±3B3C3D7、的值等于( )AB2CD28、下列各数是无理数的是( )AB3.33CD9、在实数,0.1010010001(相邻两个1中间依次多1个0)中,无理数有( )A2个B3个C4个D5个10、若一个数的算术平方根与它的立方根的值相同,则这个数是( )A1B0和1C0D非负数第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、的平方根是_,_2、若实数a、b、c满足+(bc+1)20,则2b2c+a_3、比较大小:|4|_(填“”、“”或“”)4、化简_,_5、比较大小:_(填“”或“”或“”)三、解答题(10小题,每小题5分,共计50分)1、计算下列各题:(1);(2)(3)2、解方程:(1)x281;(2)(x1)3273、已知正数a的两个不同平方根分别是2x2和63x,a4b的算术平方根是4(1)求这个正数a以及b的值;(2)求b2+3a8的立方根4、计算:5、有理数a,b如果满足,那么我们定义a,b为一组团结数对,记为a,b例如:和,因为,所以,则称和为一组团结数对,记为根据以上定义完成下列各题:(1)找出2和2,1和3,2和这三组数中的团结数对,记为 ;(2)若5,x成立,则x的值为 ;(3)若a,b成立,b为按一定规律排列成1,3,9,27,81,243,这列数中的一个,且b与b左右两个相邻数的和是567,求a的值6、(1)计算:;(2)分解因式:7、计算:(1)18+(17)+7+(8);(2)×(12);(3)22+|1|+8、我们知道,假分数可以化为整数与真分数的和的形式例如:=1+ 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,称之为“假分式”;当分子的次数小于分母的次数时,称之为“真分式”例如:像,这样的分式是假分式;像,这样的分式是真分式类似的,假分式也可以化为整式与真分式的和的形式 例如:;解决下列问题:(1)写出一个假分式为: ;(2)将分式化为整式与真分式的和的形式为: ;(直接写出结果即可)(3)如果分式的值为整数,求x的整数值9、(1)计算: ;(2)求的值: 10、计算:-参考答案-一、单选题1、A【分析】,根据被开方数的大小即判断这三个数的大小关系【详解】2故选A【点睛】本题考查了实数大小比较,掌握无理数的估算是解题的关键2、C【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】解:,是整数,属于有理数;是分数,属于有理数;无理数有,共2个故选:C【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001,等有这样规律的数3、B【分析】根据“无限不循环的小数是无理数”可直接进行排除选项【详解】解:,在以下实数:,3.1411,8,0.020020002中,无理数有,0.020020002;共3个;故选B【点睛】本题主要考查算术平方根及无理数,熟练掌握求一个数的算术平方根及无理数的概念是解题的关键4、D【分析】首先根据绝对值的性质和二次根式的性质得到,然后解方程组求解即可【详解】解:与互为相反数,+0,得:,得:,解得:,将代入得:,解得:故选:D【点睛】此题考查了绝对值的性质,二次根式的性质,相反数的性质以及解二元一次方程组等知识,解题的关键是根据题意得出关于a、b的方程组并求解5、C【分析】根据平方根和立方根的定义,可以求出平方根和立方根都是本身数是0【详解】解:平方根是本身的数有0,立方根是本身的数有1,-1,0;平方根和立方根都是本身的数是0故选C【点睛】本题主要考查了平方根和立方根的定义,熟知定义是解题的关键:如果有两个数a,b(b0),满足,那么a就叫做b的平方根;如果有两个数c、d满足,那么c就叫做d的立方根6、A【分析】根据平方根的定义进行判断即可【详解】解:(±3)299的平方根是±3故选:A【点睛】本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根7、D【分析】由于表示4的算术平方根,由此即可得到结果【详解】解:4的算术平方根为2,的值为2故选D【点睛】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误弄清概念是解决本题的关键8、C【分析】无理数是指无限不循环小数,由此概念以及立方根的定义分析即可【详解】解:,是有理数,3.33和是有理数,是无理数,故选:C【点睛】本题考查求一个数的立方根,以及无理数的识别,掌握立方根的定义以及无理数的基本定义是解题关键9、D【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】解:是有理数,是无限循环小数,是有理数,是分数,是有理数,0.1010010001(相邻两个1中间依次多1个0)是无理数,共个,故选:D【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001,等有这样规律的数10、B【分析】根据立方根和算术平方根的性质可知,立方根等于它本身的实数0、1或-1,算术平方根等于它本身的实数是0或1,由此即可解决问题【详解】解:立方根等于它本身的实数0、1或1,算术平方根等于它本身的数是0和1,一个数的算术平方根与它的立方根的值相同的是0和1,故选B【点睛】主要考查了立方根,算术平方根的性质牢牢掌握立方根和算术平方根等于它本身的实数是解答本题的关键点二、填空题1、±2 -8 【分析】根据平方根的定义:如果对于一个数a和非负数b,有,那么a就叫做b的平方根;立方根的定义:对于c、d两个数,如果,那么c就叫做d的立方根,进行求解即可【详解】解:,4的平方根为±2,的平方根为±2,故答案为:±2;-8【点睛】本题主要考查了算术平方根,平方根和立方根,熟知相关定义是解题的关键2、1【分析】利用绝对值以及平方数的非负性,求出的值、和的关系式,利用整体代入直接求出代数式的值【详解】解:+(bc+1)20, 故, 故答案为:1【点睛】本题主要是考查了绝对值以及平方数的非负性、整体代入法求解代数式的值,熟练利用非负性,求出对应字母的值,利用整体代入法,求解代数式的值,这是解决本题的关键3、【分析】先化简绝对值,再根据实数的大小比较法则即可得【详解】解:,因为,所以,即,故答案为:【点睛】本题考查了绝对值、实数的大小比较,熟练掌握实数的大小比较法则是解题关键4、2 3 【分析】由题意直接根据立方根和算术平方根的性质进行化简即可得出答案.【详解】解:2,3故答案为:2,3【点睛】本题考查立方根和算术平方根的化简,熟练掌握立方根和算术平方根的性质是解题的关键.5、【分析】先求解两个实数的绝对值,再利用近似值比较它们绝对值的大小,利用两个负数绝对值大的反而小可得答案.【详解】解: 而 故答案为:【点睛】本题考查的是实数的大小比较,掌握“两个负实数的大小比较的方法”是解本题的关键.三、解答题1、(1)-3(2)-6x(3)4y-3xz【分析】(1)先化简零指数幂,负整数指数幂,有理数的乘方,绝对值,然后再计算;(2)先利用积的乘方运算法则计算乘方,然后利用整式乘除法运算法则从左往右依次计算(3)根据多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加(1)解:原式;(2)解:原式;(3)解:【点睛】本题考查整式的混合运算,负整数指数幂,零指数幂,掌握积的乘方(ab)n=anbn运算法则,整式的除法,理解a0=1(a0),(a0),牢记法则是解题关键2、(1)x±9;(2)x4【分析】(1)方程利用平方根定义开方即可求出解;(2)方程利用立方根定义开立方即可求出解【详解】解:(1)开方得:x±9;(2)开立方得:x13,解得:x4【点睛】本题考查了利用平方根,立方根定义解方程,掌握平方根和立方根的定义是解题的关键平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数),立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数)3、(1),;(2)b2+3a8的立方根是5【分析】(1)根据题意可得,2x2+63x0,即可求出a36,再根据a4b的算术平方根是4,求出b的值即可;(2)将(1)中所求a、b的值代入代数式b2+3a8求值,再根据立方根定义计算即可求解【详解】解:(1)正数a的两个不同平方根分别是2x2和63x,2x2+63x0,x4,2x26,a36,a4b的算术平方根是4,a4b16,36-4b=16b5;(2)当a=36,b=5时,b2+3a825+36×38125,b2+3a8的立方根是5【点睛】本题考查平方根的性质,算术平方根定义,立方根定义,掌握平方根的性质,算术平方根定义,立方根定义是解题关键4、7【分析】根据实数的性质化简即可求解【详解】解:原式【点睛】此题主要考查实数的混合运算,解题的关键是熟知负指数幂的运算法则5、(1)2,2,2,(2)(3)【解析】(1)和2是一组团结数,即为,和3不是一组团结数,和是一组团结数,即为,故答案为:,;(2)若5,x成立,则故答案为:;(3)设b左面相邻的数为x,b为3x,b右面相邻的数为9x由题意可得 解得 x81 所以 b243 由于a,b成立,则a243243a,解得【点睛】本题考查新定义计算,实际有理数的混合运算、一元一次方程等知识,是基础考点,掌握相关知识是解题关键6、(1);(2)【分析】(1)先计算乘方运算,求解算术平方根,化简绝对值,再合并即可;(2)提取公因式即可.【详解】解:(1)解:原式(2)解:原式【点睛】本题考查的是立方根的含义,绝对值的化简,实数的运算,提公因式法分解因式,掌握“实数的运算及提公因式分解因式”是解本题的关键.7、(1)0;(2)1;(3)【分析】(1)根据有理数的加法计算法则求解即可;(2)根据有理数的乘法分配律求解即可;(3)根据有理数的乘方,绝对值和算术平方根的计算法则求解即可【详解】解:(1) ;(2);(3)【点睛】本题主要考查了有理数乘法的分配律,有理数的加减,有理数的乘方,化简绝对值,算术平方根,熟知相关计算法则是解题的关键8、(1);(2)1+;(3)x=0,1,3,4【分析】(1)根据定义即可求出答案(2)根据题意给出的变形方法即可求出答案(3)先将分式化为真分式与整式的和,然后根据题意即可求出x的值【详解】解:(1)根据题意,是一个假分式;故答案为:(答案不唯一) (2); 故答案为:;(3),x2=±1或x2=±2,x=0,1,3,4;【点睛】本题考查学生的阅读能力,解题的关键是正确理解真假分式的定义,本题属于基础题型9、(1)0;(2)【分析】(1)根据立方根和平方根的性质化简,再计算加法,即可求解;(2)先将系数化为1,再利用平方根的性质,即可求解【详解】解:(1) 原式2+2; (2) 解得: 【点睛】本题主要考查了立方根和平方根的性质,熟练掌握 是解题的关键10、【分析】根据立方根,算术平方根,绝对值的计算法则求解即可【详解】解:【点睛】本题主要考查了立方根,算术平方根,绝对值,熟练掌握相关计算法则是解题的关键