2021-2022学年浙教版初中数学七年级下册第四章因式分解综合测试试卷(无超纲).docx
-
资源ID:28150404
资源大小:278.64KB
全文页数:19页
- 资源格式: DOCX
下载积分:8金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年浙教版初中数学七年级下册第四章因式分解综合测试试卷(无超纲).docx
初中数学七年级下册第四章因式分解综合测试(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列等式从左到右的变形,属于因式分解的是()A.m (a+b)ma+mbB.x2+2x+1x(x+2)+1C.x2+xx2(1+)D.x29(x+3)(x3)2、下列各式中,正确的因式分解是( )A.B.C.D.3、多项式可以因式分解成,则的值是( )A.-1B.1C.-5D.54、对于有理数a,b,c,有(a+100)b(a+100)c,下列说法正确的是()A.若a100,则bc0B.若a100,则bc1C.若bc,则a+bcD.若a100,则abc5、下列各式从左到右的变形,属于因式分解的是()A.ab+bc+bb(a+c)+bB.a29(a+3)(a3)C.(a1)2+(a1)a2aD.a(a1)a2a6、下列各式由左到右的变形中,属于因式分解的是()A.a2abac=a(a+b+c )B.x2+x+1=(x+1)2xC.(x+2)(x1)=x2+x2D.a2+b2=(a+b)22ab7、下列各式中,由左向右的变形是分解因式的是( )A.B.C.D.8、下列多项式中有因式x1的是()x2+x2;x2+3x+2;x2x2;x23x+2A.B.C.D.9、下列各式从左到右的变形中,属于因式分解的是( )A.6x9y33(2x3y)B.x21(x1)2C.(xy)2x22xyy2D.2x222(x1)(x1)10、下列分解因式中,x2+2xy+x=x(x+2y);x2+4x+4=(x+2)2;x2+y2=(x+y)(xy).正确的个数为()A.3B.2C.1D.011、若,则的值为( )A.B.C.D.12、下列各式中,能用完全平方公式分解因式的是()A.B.C.D. 13、下列各式变形中,是因式分解的是( )A.B.C.D.14、将边长为m的三个正方形纸片按如图1所示摆放并构造成边长为n的大正方形时,三个小正方形的重叠部分是两个边长均为1的正方形;将其按如图2所示摆放并构造成一个邻边长分别为3m和n的长方形时,所得长方形的面积为35.则图2中长方形的周长是()A.24B.26C.28D.3015、把代数式ax28ax+16a分解因式,下列结果中正确的是()A.a(x+4)2B.a(x4)2C.a(x8)2D.a(x+4)(x4)二、填空题(10小题,每小题4分,共计40分)1、因式分解:_2、因式分解:=_3、因式分解:_4、因式分解:_5、若关于的二次三项式可以用完全平方公式进行因式分解,则_6、如果,那么的值为_7、利用平方差公式计算的结果为_8、因式分解:_9、若xz2,zy1,则x22xyy2_10、已知x+y2,xy4,则x2y+xy2_三、解答题(3小题,每小题5分,共计15分)1、分解下列因式:(1)mx22mxymy2;(2)4a4ab22、分解因式:(a2a)22(a2a)83、阅读以下文字并解决问题:对于形如这样的二次三项式,我们可以直接用公式法把它分解成的形式,但对于二次三项式,就不能直接用公式法分解了此时,我们可以在中间先加上一项9,使它与的和构成一个完全平方式,然后再减去9,则整个多项式的值不变即:,像这样,把一个二次三项式变成含有完全平方式的形式的方法,叫做配方法(1)利用“配方法”因式分解:(2)如果,求的值-参考答案-一、单选题1、D【分析】根据因式分解的定义是把一个多项式化为几个整式的积的形式的变形,可得答案.【详解】解:A、是整式的乘法,不是因式分解,故此选项不符合题意;B、没把一个多项式化为几个整式的积的形式,故此选项不符合题意;C、因为的分母中含有字母,不是整式,所以没把一个多项式化为几个整式的积的形式,故此选项不符合题意;D、把一个多项式化为几个整式的积的形式,故此选项符合题意;故选:D.【点睛】本题主要考查了因式分解的定义,熟练掌握因式分解是把一个多项式化为几个整式的积的形式的变形是解题的关键.2、B【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:.,故此选项不合题意;.,故此选项符合题意;.,故此选项不合题意;.,故此选项不合题意;故选:.【点睛】本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.3、D【分析】先提公因式,然后将原多项式因式分解,可求出和 的值,即可计算求得答案.【详解】解:,.故选:.【点睛】本题考查了提公因式法分解因式,准确找到公因式是解题的关键.4、A【分析】将等式移项,然后提取公因式化简,根据乘法等式的性质,求解即可得.【详解】解:,或,即:或,A选项中,若,则正确;其他三个选项均不能得出,故选:A.【点睛】题目主要考查利用因式分解化简等式,熟练掌握因式分解的方法是解题关键.5、B【分析】根据因式分解的定义逐项排查即可.【详解】解:根据因式分解的定义可知:A、C、D都不属于因式分解,只有B属于因式分解.故选B.【点睛】本题主要考查了因式分解的定义,把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解.6、A【分析】根据因式分解是把一个多项式转化成几个整式的积的形式,可得答案;【详解】解:A、把一个多项式转化成了几个整式的积,故A符合题意;、没把一个多项式转化成几个整式积,故不符合题意;、是整式的乘法,故C不符合题意;、没把一个多项式转化成几个整式积,故不符合题意;故选:A.【点睛】本题考查了因式分解的意义,解题的关键是掌握因式分解是把一个多项式转化成几个整式积.7、B【分析】判断一个式子是否是因式分解的条件是等式的左边是一个多项式,等式的右边是几个整式的积,左、右两边相等,根据以上条件进行判断即可.【详解】解:A、,不是因式分解;故A错误;B、,是因式分解;故B正确;C、,故C错误;D、,不是因式分解,故D错误;故选:B.【点睛】本题考查了因式分解的意义,把多项式转化成几个整式积的形式是解题关键.8、D【分析】根据十字相乘法把各个多项式因式分解即可判断.【详解】解:x2+x2;x2+3x+2;x2x2;x23x+2.有因式x1的是.故选:D.【点睛】本题考查了十字相乘法因式分解,对于形如的二次三项式,若能找到两数,使,且,那么就可以进行如下的因式分解,即.9、D【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.【详解】解:A、6x+9y+3=3(2x+3y+1),故此选项错误;B、x2-1=(x+1)(x-1),故此选项错误;C、(x+y)2=x2+2xy+y2,是整式乘法运算,不是因式分解,故此选项错误;D、2x2-2=2(x-1)(x+1),属于因式分解,故此选项正确.故选:D.【点睛】本题考查的是因式分解的意义,正确掌握因式分解的定义是解题关键.10、C【分析】直接利用提取公因式法以及公式法分别分解因式判断即可.【详解】解:x2+2xy+x=x(x+2y+1),故错误;x2+4x+4=(x+2)2,故正确;-x2+y2=(y+x)(y-x),故错误;故选:C.【点睛】本题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.11、C【分析】根据十字相乘法可直接进行求解a、b的值,然后问题可求解.【详解】解:,;故选C.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.12、D【分析】根据完全平方公式法分解因式,即可求解.【详解】解:A、不能用完全平方公式因式分解,故本选项不符合题意;B、不能用完全平方公式因式分解,故本选项不符合题意;C、不能用完全平方公式因式分解,故本选项不符合题意;D、能用完全平方公式因式分解,故本选项符合题意;故选:D【点睛】本题主要考查了完全平方公式法分解因式,熟练掌握 是解题的关键.13、D【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A、等式的右边不是整式的积的形式,故A错误;B、等式右边分母含有字母不是因式分解,故B错误;C、等式的右边不是整式的积的形式,故C错误;D、是因式分解,故D正确;故选D.【点睛】本题考查了因式分解的定义,因式分解是把一个多项式转化成几个整式乘积的形式.14、A【分析】由题意:按如图1所示摆放并构造成边长为n的大正方形时,三个小正方形的重叠部分是两个边长均为1的正方形;将其按如图2所示摆放并构造成一个邻边长分别为3m和n的长方形时,所得长方形的面积为35,列出方程组,求出3m=7,n=5,即可解决问题.【详解】依题意,由图1可得,由图2可得,即解得或者(舍)时,则图2中长方形的周长是.故选A.【点睛】本题考查了利用因式分解解方程,找准等量关系,列出方程是解题的关键.15、B【分析】直接提取公因式a,再利用完全平方公式分解因式即可.【详解】解:ax28ax+16aa(x28x+16)a(x4)2.故选B.【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式的方法.二、填空题1、a(a+1)(a-1)【分析】先找出公因式,然后提取公因式,再利用平方差公式分解因式即可.【详解】解:故答案为:.【点睛】本题考查了用提公因式法分解因式,准确找出公因式是解题的关键.2、【分析】根据完全平方公式分解即可.【详解】解: =,故答案为:.【点睛】本题考查了用公式法进行因式分解,解题关键是熟练运用完全平方公式进行因式分解.3、【分析】先提公因式,再用平方差公式分解即可.【详解】故答案为:【点睛】本题综合考查了提公因式法和公式法分解因式,一般地,因式分解的步骤是:先考虑提公因式;其次考虑用公式法.另外,因式分解要分解到再也不能分解为止.4、【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【详解】解:3x2-3y2=3(x2-y2)=3(x+y)(x-y).故答案为:3(x+y)(x-y).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.5、-3或5【分析】直接利用完全平方公式进而分解因式得出答案.【详解】解:x2-2(m-1)x+16能用完全平方公式进行因式分解,-2(m-1)=±8,解得:m=-3或5.故答案为:-3或5.【点睛】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.6、54【分析】先利用平方差公式分解因式,再代入求值,即可.【详解】解:=2×9×3=54,故答案是:54.【点睛】本题主要考查代数式求值,掌握平方差公式,进行分解因式,是解题的关键.7、1010【分析】把分子利用平方差公式分解因式,然后约分化简.【详解】解:原式,故答案为:1010.【点睛】本题考查了利用平方差公式进行因式分解,熟练掌握a2-b2=(+b) (a-b)是解答本题的关键.8、【分析】先提取公因式,然后运用完全平方公式因式分解即可.【详解】解:,故答案为:.【点睛】本题主要考查提公因式因式分解以及公式法因式分解,熟知完全平方公式的结构特点是解题关键.9、9【分析】先根据xz2,zy1可得xy3,再根据完全平方公式因式分解即可求解.【详解】解:xz2,zy1,xzzy21,即:xy3,x22xyy2(xy)29,故答案为:9.【点睛】本题考查了完全平方公式进行因式分解以及整式加减,熟练掌握完全平方公式是解决本题的关键.10、-8【分析】先提出公因式,进行因式分解,再代入,即可求解.【详解】解:x+y2,xy4,.故答案为: .【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法,并会根据多项式的特征选用合适的方法是解题的关键.三、解答题1、(1)m(xy)2;(2)4a(1b)(1b)【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式提取公因式,再利用平方差公式分解即可.【详解】解:(1)原式m(x22xyy2)m(xy)2;(2)原式4a(1b2)4a(1b)(1b).【点睛】本题主要考查提公因式法因式分解和公式法因式分解,准确找到公因式,熟练掌握完全平方公式和平方差公式的结构特点时是解题的关键.2、【分析】将看错整体,根据十字相乘法进行因式分解,对于再次分解即可【详解】(a2a)22(a2a)8【点睛】本题考查了因式分解,分解彻底是解题的关键.3、(1);(2)【分析】(1)将前两项配方后即可得到,然后利用平方差公式因式分解即可;(2)由,可得,求得a、b、c后即可得出答案.【详解】解:(1)(2),【点睛】本题考查了因式分解的知识,解题的关键是能够熟记完全平方公式及平方差公式的形式,并能正确的分组.