2021-2022学年度沪科版九年级数学下册第24章圆定向训练试题(名师精选).docx
-
资源ID:28150503
资源大小:1,020.50KB
全文页数:31页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年度沪科版九年级数学下册第24章圆定向训练试题(名师精选).docx
沪科版九年级数学下册第24章圆定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,CAB=64°,将ABC在平面内绕点A旋转到ABC的位置,使CCAB,则旋转角的度数为( )A64°B52°C42°D36°2、下列图形中,是中心对称图形,但不是轴对称图形的是( )ABCD3、如图,AB是的直径,的弦DC的延长线与AB的延长线相交于点P,于点E,则阴影部分的面积为( )ABCD4、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为( )A1cmB2cmC3cmD4cm5、如图,PA,PB是O的切线,A,B为切点,PA4,则PB的长度为( )A3B4C5D66、如图,DC是O的直径,弦ABCD于M,则下列结论不一定成立的是()AAM=BMBCM=DMCD7、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cmA3B6C12D188、下列图形中,既是轴对称图形,又是中心对称图形的是()ABCD9、如图,在中,将绕点C逆时针旋转90°得到,则的度数为( )A105°B120°C135°D150°10、从图形运动的角度研究抛物线, 有利于我们认识新的拋物线的特征. 如果将拋物线绕着原点旋转180°,那么关于旋转后所得新抛物线与原抛物线之间的关系,下列法正确的是( )A它们的开口方向相同B它们的对称轴相同C它们的变化情況相同D它们的顶点坐标相同第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在ABC中,已知ABC90°,BAC30°,BC1,如图所示,将ABC绕点A按逆时针方向旋转90°后得到ABC则图中阴影部分的面积为_2、如图,已知,在中,将绕点A逆时针旋转一个角至位置,连接BD,CE交于点F(I)求证:;(2)若四边形ABFE为菱形,求的值;(3)在(2)的条件下,若,直接写出CF的值3、如图,四边形ABCD是O的内接四边形,O的半径为2,D110°,则的长为_4、如图,一次函数的图象与x轴交于点A,与y轴交于点B,作的外接圆,则图中阴影部分的面积为_(结果保留)5、若扇形的圆心角为60°,半径为2,则该扇形的弧长是_(结果保留)三、解答题(5小题,每小题10分,共计50分)1、如图,AB为O的切线,B为切点,过点B作BCOA,垂足为点E,交O于点C,连接CO并延长CO与AB的延长线交于点D,连接AC(1)求证:AC为O的切线;(2)若O半径为2,OD4求线段AD的长2、在正方形ABCD中,过点B作直线l,点E在直线l上,连接CE,DE,其中,过点C作于点F,交直线l于点H(1)当直线l在如图的位置时请直接写出与之间的数量关系_请直接写出线段BH,EH,CH之间的数量关系_(2)当直线l在如图的位置时,请写出线段BH,EH,CH之间的数量关系并证明;(3)已知,在直线l旋转过程中当时,请直接写出EH的长3、如图,在ABC是O的内接三角形,B45°,连接OC,过点A作ADOC,交BC的延长线于D(1)求证:AD是O的切线;(2)若O的半径为2,OCB75°,求ABC边AB的长4、如图,在平面直角坐标系中,ABC三个顶点的坐标分别为A(0,3),B(3,5),C(4,1)(1)把ABC向右平移3个单位得A1B1C1,请画出A1B1C1并写出点A1的坐标;(2)把ABC绕原点O旋转180°得到A2B2C2,请画出A2B2C25、如图,在等边中,D为BC边上一点,连接AD,将沿AD翻折得到,连接BE并延长交AD的延长线于点F,连接CF(1)若,求的度数;(2)若,求的大小;(3)猜想CF,BF,AF之间的数量关系,并证明-参考答案-一、单选题1、B【分析】先根据平行线的性质得ACC=CAB=64°,再根据旋转的性质得CAC等于旋转角,AC=AC,则利用等腰三角形的性质得ACC=ACC=64°,然后根据三角形内角和定理可计算出CAC的度数,从而得到旋转角的度数【详解】解:CCAB,ACC=CAB=64°ABC在平面内绕点A旋转到ABC的位置,CAC等于旋转角,AC=AC,ACC=ACC=64°,CAC=180°-ACC-ACC=180°-2×64°=52°,旋转角为52°故选:B【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等2、B【分析】根据“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解【详解】解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;B、是中心对称图形但不是轴对称图形,故符合题意;C、既不是轴对称图形也不是中心对称图形,故不符合题意;D、是轴对称图形但不是中心对称图形,故不符合题意;故选B【点睛】本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键3、B【分析】由垂径定理可知,AE=CE,则阴影部分的面积等于扇形AOD的面积,求出,然后利用扇形面积公式,即可求出答案【详解】解:根据题意,如图:AB是的直径,OD是半径,AE=CE,阴影CED的面积等于AED的面积,;故选:B【点睛】本题考查了求扇形的面积,垂径定理,解题的关键是掌握所学的知识,正确利用扇形的面积公式进行计算4、B【分析】连接OB,过点O作OCAB于点D,交O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可【详解】解:连接OB,过点O作OCAB于点D,交O于点C,如图所示:AB=8cm,BD=AB=4(cm),由题意得:OB=OC=5cm,在RtOBD中,OD=(cm),CD=OC-OD=5-3=2(cm),即水的最大深度为2cm,故选:B【点睛】本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键5、B【分析】由切线的性质可推出,再根据直角三角形全等的判定条件“HL”,即可证明,即得出【详解】PA,PB是O的切线,A,B为切点,在和中,故选:B【点睛】本题考查切线的性质,三角形全等的判定和性质熟练掌握切线的性质是解答本题的关键6、B【分析】根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得【详解】解:弦ABCD,CD过圆心O,AM=BM,即选项A、C、D选项说法正确,不符合题意,当根据已知条件得CM和DM不一定相等,故选B【点睛】本题考查了垂径定理,解题的关键是掌握垂径定理7、B【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算【详解】解:它的侧面展开图的面积×2×2×36(cm2)故选:B【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长8、C【详解】解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;选项B不是轴对称图形,是中心对称图形,故B不符合题意;选项C既是轴对称图形,也是中心对称图形,故C符合题意;选项D是轴对称图形,不是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.9、B【分析】由题意易得,然后根据三角形外角的性质可求解【详解】解:由旋转的性质可得:,;故选B【点睛】本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键10、B【分析】根据旋转的性质及抛物线的性质即可确定答案【详解】抛物线的开口向上,对称轴为y轴,顶点坐标为(0,2),将此抛物线绕原点旋转180°后所得新抛物线的开口向下,对称轴仍为y轴,顶点坐标为(0,2),所以在四个选项中,只有B选项符合题意故选:B【点睛】本题考查了二次函数的图象与性质,旋转的性质等知识,掌握这两方面的知识是关键二、填空题1、【分析】利用勾股定理求出AC及AB的长,根据阴影面积等于求出答案【详解】解:由旋转得,=BAC30°,ABC90°,BAC30°,BC1,AC=2BC=2,AB=, 阴影部分的面积=,故答案为:【点睛】此题考查了求不规则图形的面积,正确掌握勾股定理、30度角直角三角形的性质、扇形面积计算公式及分析出阴影面积的构成特点是解题的关键2、(1)见解析;(2)120°;(3)【分析】(1)根据旋转的性质和全等三角形的判定解答即可;(2)根据等腰三角形的性质求得ABD=90°,BAE=+30°,根据菱形的邻角互补求解即可;(3)连接AF,根据菱形的性质和全等三角形的性质可求得FAC=45°,FCA=30°,过F作FGAC于G,设FG=x,根据等腰直角三角形的性质和含30°角的直角三角形的性质求解即可【详解】解:(1)由旋转得:AB=AD,AC=AE,BAD=CAE=,AB=AC,AB=AC=AD=AE,在ABD和ACE中,ABDACE(SAS);(2)AB=AD,BAD=,BAC=30°,ABD=(180°BAD)÷2=(180°)÷2=90°,BAE=+30°,四边形ABFE是菱形,BAE+ABD=180°,即+30°+90°=180°,解得:=120°;(3)连接AF,四边形ABFE是菱形,BAE=+30°=150°,BAF=BAE=75°,又BAC=30°,FAC=75°30°=45°,ABDACE,FCA=ABD=90°=30°,过F作FGAC于G,设FG=x,在RtAGF中,FAG=45°,AGF=90°,AFG=FAG=45°,AGF是等腰直角三角形,AG=FG=x,在在RtAGF中,FCG=30°,FGC=90°,CF=2FG=2x,AC=AB=2,又AG+CG=AC,解得:,CF=2x= 【点睛】本题考查全等三角形的判定与性质、旋转的性质、菱形的性质、等腰三角形的判定与性质、含30°角的直角三角形的性质、三角形的内角和定理、解一元一次方程等知识,熟练掌握相关知识的联系与运用是解答的关键3、#【分析】连接OA、OC,先求出ABC的度数,然后得到AOC,再由弧长公式即可求出答案【详解】解:连接OA、OC,如图,四边形ABCD是O的内接四边形,D110°,;故答案为:【点睛】本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式4、【分析】先求出A、B、C坐标,再证明三角形BOC是等边三角形,最后根据扇形面积公式计算即可【详解】过C作CDOA于D一次函数的图象与x轴交于点A,与y轴交于点B,当时,B点坐标为(0,1)当时,A点坐标为作的外接圆,线段AB中点C的坐标为,三角形BOC是等边三角形C的坐标为故答案为:【点睛】本题主要考查了一次函数的综合运用,求扇形面积用已知点的坐标表示相应的线段是解题的关键5、【分析】已知扇形的圆心角为,半径为2,代入弧长公式计算【详解】解:依题意,n=,r=2,扇形的弧长=故答案为:【点睛】本题考查了弧长公式的运用关键是熟悉公式:扇形的弧长=三、解答题1、(1)见解析;(2)4【分析】(1)连接OB,证明AOBAOC(SSS),可得ACOABO90°,即可证明AC为O的切线;(2)在RtBOD中,勾股定理求得BD,根据sinD,代入数值即可求得答案【详解】解:(1)连接OB,AB是O的切线,OBAB,即ABO90°,BC是弦,OABC,CEBE,ACAB,在AOB和AOC中,AOBAOC(SSS),ACOABO90°,即ACOC,AC是O的切线;(2)在RtBOD中,由勾股定理得,BD2,sinD,O半径为2,OD4,解得AC2,ADBD+AB4【点睛】本题考查了切线的性质与判定,正弦的定义,三角形全等的性质与判定,勾股定理,掌握切线的性质与判定是解题的关键2、(1);(2);证明见解析;(3)或【分析】(1),根据CE=BC,四边形ABCD为正方形,可得BC=CD=CE,根据CFDE,得出CF平分ECD即可;,过点C作CGBE于G,根据BC=EC,得出ECG=BCG=,根据ECH=HCD=,可得CG=HG,根据勾股定理在RtGHC中,根据GE=,得出即可;(2),过点C作交BE于点M,得出,先证得出,可证是等腰直角三角形,可得即可;(3)或,根据,分两种情况,当ABE=90°-15°=75°时,BC=CE,先证CDE为等边三角形,可求FEH=DEC=CEB=60°-15°=45°,根据CFDE,得出DF=EF=1,FHE=180°-HFE-FEH=45°,根据勾股定理HE=,当ABE=90°+15°=105°,可得BC=CE得出CBE=CEB=15°,可求FCE=,FEC=180°-CFE-FCE=30°,根据30°直角三角形先证得出CF=,根据勾股定理EF=,再证FH=FE,得出EH=即可【详解】解:(1)CE=BC,四边形ABCD为正方形,BC=CD=CE,CFDE,CF平分ECD,ECH=HCD,故答案为:ECH=HCD;,过点C作CGBE于G,BC=EC,ECG=BCG=,ECH=HCD=,GCH=ECG+ECF=+,GHC=180°-HGC+GCH=180°-90°-45°=45°,CG=HG,在RtGHC中, ,GE=, GH=GE+EH=,故答案是:;(2), 证明:过点C作交BE于点M,则,是等腰直角三角形, (3)或,分两种情况,当ABE=90°-15°=75°时,BC=CE,CBE=CEB=15°,BCE=180°-CBE-CEB=180°-15°-15°=150°,DCE=BCE-BCD=150°=90°=60°,CE=CD,CDE为等边三角形,DE=CD=AB=2,DEC=60°,FEH=DEC=CEB=60°-15°=45°,CFDE,DF=EF=1,FHE=180°-HFE-FEH=45°,EF=HF=1,HE=,当ABE=90°+15°=105°,BC=CE,CBE=CEB=15°,BCE=180°-CBE-CEB=150°,DCE=360°-DCB-BCE=120°,CE=BC=CD,CHDE,FCE=, FEC=180°-CFE-FCE=30°,CF=,EF=,HEF=CEB+CEF=15°+30°=45°,FHE=180°-HFE-FEH=45°=FEH,FH=FE,EH=,或【点睛】本题考查正方形性质,图形旋转性质,勾股定理,等边三角形,等腰直角三角形性质,角平分线,线段和差,掌握正方形性质,图形旋转性质,勾股定理,等边三角形,等腰直角三角形性质,角平分线,线段和差是解题关键3、(1)见解析;(2)【分析】(1)如图所示,连接OA,由圆周角定理可得COA=90°,再由平行线的性质得到OAD+COA=180°,则OAD=90°,由此即可证明;(2)连接OB,过点O作OEAB,垂足为E,先由等腰三角形的性质与三角形内角和定理求出COB =30°,则AOB=120°,可以得到OAB=OBA=30°,由勾股定理可得,求出,则AB=【详解】解:(1)如图所示,连接OA,CBA=45°,COA=90°, ADOC,OAD+COA=180°,OAD=90°,又点A在圆O上, AD是O的切线; (2)连接OB,过点O作OEAB,垂足为E,OCB=75°,OB=OC,OCB=OBC=75°,COB=180°-OCB-OBC=30°, 由(1)证可得AOC=90°,AOB=120°, OA=OB,OAB=OBA=30°,又OEAB,AE=BE, 在RtAOE中,AO=2,OAE=30°,OE=AO=1, 由勾股定理可得,AB=【点睛】本题主要考查了圆周角定理,切线的判定,等腰三角形的性质与判定,含30度角的直角三角形的性质,三角形内角和定理,勾股定理,熟知相关知识是解题的关键4、(1)图见解析;A1(3,3);(2)见解析【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案【详解】解:(1)如图所示:A1B1C1,即为所求,点A1的坐标为:(3,3);(2)如图所示:A2B2C2,即为所求【点睛】此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键5、(1)20°;(2);(3)AF= CF+BF,理由见解析【分析】(1)由ABC是等边三角形,得到AB=AC,BAC=ABC=60°,由折叠的性质可知,EAD=CAD=20°,AC=AE,则BAE=BAC-EAD-CAD=20°,AB=AE,CBF=ABE-ABC=20°;(2)同(1)求解即可;(3)如图所示,将ABF绕点A逆时针旋转60°得到ACG,先证明AEFACF得到AFE=AFC,然后证明AFE=AFC=60°,得到BFC=120°,即可证明F、C、G三点共线,得到AFG是等边三角形,则AF=GF=CF+CG=CF+BF【详解】解:(1)ABC是等边三角形,AB=AC,BAC=ABC=60°,由折叠的性质可知,EAD=CAD=20°,AC=AE,BAE=BAC-EAD-CAD=20°,AB=AE,CBF=ABE-ABC=20°;(2)ABC是等边三角形,AB=AC,BAC=ABC=60°,由折叠的性质可知,AC=AE, ,AB=AE,;(3)AF= CF+BF,理由如下:如图所示,将ABF绕点A逆时针旋转60°得到ACG,AF=AG,FAG=60°,ACG=ABF,BF=CG在AEF和ACF中,AEFACF(SAS),AFE=AFC,CBF+BCF+BFD+CFD=180°,CAF+CFA+ACD+CFD=180°,BFD=ACD=60°,AFE=AFC=60°,BFC=120°,BAC+BFC=180°,ABF+ACF=180°,ACG+ACF=180°,F、C、G三点共线,AFG是等边三角形,AF=GF=CF+CG=CF+BF【点睛】本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键