2021-2022学年基础强化北师大版七年级数学下册第六章概率初步专项攻克试题(无超纲).docx
-
资源ID:28150581
资源大小:257.21KB
全文页数:17页
- 资源格式: DOCX
下载积分:8金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年基础强化北师大版七年级数学下册第六章概率初步专项攻克试题(无超纲).docx
北师大版七年级数学下册第六章概率初步专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、袋中有白球3个,红球若干个,他们只有颜色上的区别从袋中随机取出一个球,如果取到白球的可能性更大,那么袋中红球的个数可能是( )A2个B3个C4个D4个或4个以上2、学校招募运动会广播员,从三名男生和一名女生共四名候选人中随机选取一人,则选中男生的概率为( )ABCD3、如图,正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )ABCD4、下列事件,你认为是必然事件的是( )A打开电视机,正在播广告B今天星期二,明天星期三C今年的正月初一,天气一定是晴天D一个袋子里装有红球1个、白球9个,每个球除颜色外都相同,任意摸出一个球是白色的5、一个不透明布袋中有2个红球,3个白球,这些球除颜色外无其他差别,摇匀后从中随机摸出一个小球,该小球是红色的概率为()ABCD6、下列说法中正确的是( )A一组数据2、3、3、5、5、6,这组数据的众数是3B袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是0.1C为了解长沙市区全年水质情况,适合采用全面调查D画出一个三角形,其内角和是180°为必然事件7、某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示折线统计图,则符合这一结果的试验最有可能的是()A不透明袋中装有大小和质地都相同的1个红球和2个黄球,从中随机取一个,取到红球B任意写一个整数,它能被2整除C掷一枚正六面体的骰子,出现1点朝上D先后两次掷一枚质地均匀的硬币,两次都出现反面8、小李同学掷一枚质地均匀的骰子,点数为2的一面朝上的概率为()ABCD9、一枚质地均匀的正六面体骰子六个面分别刻有1到6的点数,掷这枚骰子,前5次朝上的点数恰好是15,则第6次朝上的点数是6的可能性( )A等于朝上点数为5的可能性B大于朝上点数为5的可能性C小于朝上点数为5的可能性D无法确定10、下列事件为必然事件的是( )A打开电视,正在播放广告B抛掷一枚硬币,正面向上C挪一枚质地均匀的般子,向上一面的点数为7D实心铁块放入水中会下沉第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、有背面完全相同,正面分别画有等腰三角形、平行四边形、矩形、菱形、等腰梯形的卡片5张,现正面朝下放置在桌面上,将其混合后,并从中随机抽取一张,则抽中正面的图形一定是轴对称图形的卡片的概率为 _2、判断下列事件的类型:(必然事件,随机事件,不可能事件)(1)掷骰子试验,出现的点数不大于6_(2)抽签试验中,抽到的序号大于0_(3)抽签试验中,抽到的序号是0_(4)掷骰子试验,出现的点数是7_(5)任意抛掷一枚硬币,“正面向上”_(6)在上午八点拨打查号台114,“线路能接通”_(7)度量五边形外角和,结果是720度_3、班会课上,小强与班上其他32名同学每人制作了一张贺卡放在一个盒子里,小强从盒子中任意地取一张恰好抽到自己制作的那张贺卡的可能性为_4、任意翻一下2021年日历,翻出1月6日的概率为_;翻出4月31日的概率为_5、在一只不透明的口袋中放入红球5个,黑球1个,黄球n个这些球除颜色不同外,其它无任何差别,搅匀后随机从中摸出一个恰好是黄球的概率为,则放入口袋中的黄球总数n_三、解答题(5小题,每小题10分,共计50分)1、山西某高校为了弘扬女排精神,组建了女排社团,通过测量女同学的身高(单位:cm),并绘制了两幅不完整的统计图,请结合图中提供的信息,解答下列问题(1)填空:该排球社团一共有 名女同学,a (2)把频数分布直方图补充完整(3)随机抽取1名学生,估计这名学生身高高于160cm的概率2、如图,小颖认为该转盘上共有三种不同的颜色,所以自由转动这个转盘,指针停在红色、黄色或蓝色区域的概率都是 ,你认为小颖的说法对吗?请说明理由3、一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,它获得食物的概率是多少?4、在学习三角形时,老师拿了4张卡片,背面完全一样,正面分别标有30°、40°、50°、75°,小致从4张卡片中随机抽了两张卡片,以卡片上的角度作为三角形的两个内角画三角形,求画出的三角形是锐角三角形的概率5、任意掷一枚质地均匀的正方体骰子,计算下列事件发生的概率:(1)掷出的数字是奇数;(2)掷出的数字大于8;(3)掷出的数字是一位数;(4)掷出的数字是3的倍数-参考答案-一、单选题1、A【分析】根据取到白球的可能性较大可以判断出白球的数量大于红球的数量,从而得解【详解】解:袋中有白球3个,取到白球的可能性较大,袋中的白球数量大于红球数量,即袋中红球的个数可能是2个或2个以下故选:A【点睛】本题考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等2、D【分析】直接利用概率公式求出即可【详解】解:共四名候选人,男生3人,选到男生的概率是:故选:D【点睛】本题考查了概率公式;用到的知识点为:概率=所求情况数与总情况数之比3、B【分析】根据题意,涂黑一个格共6种等可能情况,结合轴对称的意义,可得到轴对称图形的情况数目,结合概率的计算公式,计算可得答案【详解】解:如图所示:根据题意,涂黑每一个格都会出现一种等可能情况,共出现6种等可能情况,只有4种是轴对称图形,分别标有1,2,3,4;使黑色部分的图形仍然构成一个轴对称图形的概率是:故选:B【点睛】本题考查几何概率的求法,解题的关键是掌握如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A)4、B【分析】必然事件就是一定发生的事件,依据定义即可作出判断【详解】解:A、是随机事件,故此选项不符合题意;B、是必然事件,故此选项符合题意;C、是随机事件,故此选项不符合题意;D、是随机事件,故此选项不符合题意;故选:B【点睛】解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件5、D【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数即可求解【详解】解:口袋中有2个红球,3个白球,P(红球)故选D【点睛】本题考查了随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A),掌握随机事件概率的求法是解题关键6、D【分析】根据统计调查、事件的发生可能性与概率的求解方法即可依次判断【详解】A. 一组数据2、3、3、5、5、6,这组数据的众数是3和5,故错误;B. 袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是,故错误;C. 为了解长沙市区全年水质情况,适合采用抽样调查,故错误;D. 画出一个三角形,其内角和是180°为必然事件,正确;故选D【点睛】此题主要考查统计调查、概率相关知识,解题的关键是熟知概率公式的求解7、A【分析】根据频率图象可知某实验的频率约为0.33,依次求出每个事件的概率进行比较即可得到答案【详解】解:A、不透明袋中装有大小和质地都相同的1个红球和2个黄球,从中随机取一个,取到红球的概率0.33,符合题意; B、任意写一个整数,它能2被整除的概率为,不符合题意; C、掷一个质地均匀的正六面体骰子,出现1点朝上的概率为0.17,不符合题意;D、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率是,不符合题意; 故选:A【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率所求情况数与总情况数之比8、A【分析】根据概率公式直接计算即可,总共6个面,点数为2的一面出现的情况只有1种, 可得点数为2的一面朝上的概率【详解】根据题意,小李同学掷一枚质地均匀的骰子,点数为2的一面朝上的概率为故选A【点睛】本题考查了简单概率,理解题意是解题的关键9、A【分析】根据正六面体骰子六个面出现的可能性相同判断即可;【详解】因为一枚均匀的骰子上有“1”至“6”,所以第6次出现的点数为1至6的机会相同故选A【点睛】本题主要考查了可能性大小,准确分析判断是解题的关键10、D【分析】根据必然事件的定义:在一定条件下,一定会发生的事件,进行逐一判断即可【详解】解:A、打开电视,可以正在播放广告,也可以不在播放广告,不是必然事件,不符合题意;B、抛掷一枚硬币,正面可以向上,反面也可以向上,不是必然事件,不符合题意;C、挪一枚质地均匀的般子,向上一面的点数为7,这是不可能发生的,不是必然事件,不符合题意;D、实心铁块放入水中会下沉,这是一定会发生的,是必然事件,符合题意;故选D【点睛】本题主要考查必然事件,熟知必然事件的定义是解题的关键二、填空题1、【分析】卡片中,轴对称图形有等腰三角形、矩形、菱形、等腰梯形,再根据概率公式=满足条件的样本个数总体的样本个数,可求出最终结果【详解】解:卡片中,轴对称图形有等腰三角形、矩形、菱形、等腰梯形,根据概率公式,(轴对称图形)故答案为:【点睛】本题主要考查概率问题,属于基础题,掌握轴对称图形的性质以及概率公式是解题关键2、必然事件 必然事件 不可能事件 不可能事件 随机事件 随机事件 不可能事件 【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断【详解】解:(1)骰子最大的点数是6,所以掷骰子试验,出现的点数不大于6是必然事件;(2)抽签试验中,序号都大于0,抽到的序号大于0是必然事件;(3)抽签试验中,序号都大于0,抽到的序号是0是不可能事件;(4) 骰子最大的点数是6,所以掷骰子试验,出现的点数是7是不可能事件;(5)硬币有两面,正面和反面,任意抛掷一枚硬币,“正面向上”是随机事件;(6)在上午八点拨打查号台114,“线路能接通”是随机事件;(7)五边形外角和是,所以度量五边形外角和,结果是度是不可能事件【点睛】此题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件3、【分析】根据题意,共有1+32=33个学生,由概率=所求情况数与总情况数之比即可得出答案【详解】解:根据题意得:;答:正好抽到自己那一张的可能性为;故答案为:【点睛】本题考查的是概率的公式,用到的知识点为:概率=所求情况数与总情况数之比4、 0 【分析】根据概率的公式,即可求解【详解】解:2021年共有365天,翻出1月6日的概率为 ,2021年4月没有31日,翻出4月31日的概率为0故答案为:;0【点睛】本题主要考查了计算概率,熟练掌握概率的公式是解题的关键5、3【分析】根据概率公式列出关于n的分式方程,解方程即可得【详解】解:根据题意可得,解得:n3,经检验n3是分式方程的解,即放入口袋中的黄球总数n3,故答案为:3【点睛】此题考查概率的求法:如果一个事件有种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件的概率 三、解答题1、(1)100,30;(2)见解析;(3)0.55【分析】(1)根据频数分布直方图中组的人数除以扇形统计图中组的所占百分比即可求得总人数,根据总人数减去组的人数即可求得组的人数,除以总人数即可求得的值;(2)根据(1)中的结论补全统计图即可;(3)根据身高高于160cm除以总人数即可求得随机抽取1名学生,估计这名学生身高高于160cm的概率【详解】解:(1)总人数为:;组的人数为故答案为:(2)如图,(3)总人数为,身高高于160cm为随机抽取1名学生,估计这名学生身高高于160cm的概率为【点睛】本题考查了频数直方图和扇形统计图信息关联,简单概率计算,从统计图中获取信息是解题的关键2、不对,见解析【分析】由红色部分扇形的圆心角为 黄色部分与蓝色部分扇形的圆心角分别为 从而可得它们占整个圆的从而可得答案.【详解】解:不对,红色面积最大,且红色面积是黄色面积的倍,也是蓝色面积的倍,指针停在红色、黄色或蓝色区域的概率分别是【点睛】本题考查的是几何概率,弄懂指针停在红色区域的概率等于是解题的关键.3、【分析】根据题意分析,根据获得食物的路径数除以路径总数,即可求解 【详解】解:由图可知寻找食物的路径共有2226(条),而获得食物的路径共有2条,所以P(获得食物)【点睛】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键4、见解析,【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第3个角的情况,再利用概率公式即可求得答案【详解】画树状图如下:第三个角度数110° ;100° ;75° ;110°; 90° ;65° ;100° ;90°; 55°; 75°; 65° ;55°故一共有12中情况,锐角三角形有6种,P(画出的三角形是锐角三角形)【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率所求情况数与总情况数之比5、(1);(2)0;(3)1;(4)【分析】掷一枚均匀的正方体骰子,6个面上分别标有数字,因而出现每个数字的机会相同,根据概率公式即可求解【详解】解:(1)(掷出的数字恰好是奇数的概率);(2)(掷出的数字大于8的概率);(3)(掷出的数字恰好是一位数的概率);(4)(掷出的数字是3的倍数的概率)【点睛】本题考查了概率的公式,正确理解列举法求概率的条件,事件有有限个结果且每种结果出现的机会相同用到的知识点为:概率所求情况数与总情况数之比