2021-2022学年度沪科版九年级数学下册第24章圆定向训练试题(含解析).docx
-
资源ID:28151733
资源大小:1.17MB
全文页数:31页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年度沪科版九年级数学下册第24章圆定向训练试题(含解析).docx
沪科版九年级数学下册第24章圆定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某村东西向的废弃小路/两侧分别有一块与l距离都为20 m的宋代碑刻A,B,在小路l上有一座亭子P A,P分别位于B的西北方向和东北方向,如图所示该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小人工湖建成后,亭子P到湖岸的最短距离是( )A20 mB20mC(20 - 20)mD(40 - 20)m2、下列图形中,是中心对称图形也是轴对称图形的是()ABCD3、如图,DC是O的直径,弦ABCD于M,则下列结论不一定成立的是()AAM=BMBCM=DMCD4、如图,在RtABC中,点D、E分别是AB、AC的中点将ADE绕点A顺时针旋转60°,射线BD与射线CE交于点P,在这个旋转过程中有下列结论:AECADB;CP存在最大值为;BP存在最小值为;点P运动的路径长为其中,正确的( )ABCD5、如图,在RtABC中,以边上一点为圆心作,恰与边,分别相切于点,则阴影部分的面积为( )ABCD6、如图,四边形内接于,如果它的一个外角,那么的度数为( )ABCD7、如图,ABC外接于O,A30°,BC3,则O的半径长为( )A3BCD8、下面的图形中既是轴对称图形又是中心对称图形的是( )ABCD9、往直径为78cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为( )A36 cmB27 cmC24 cmD15 cm10、在半径为6cm的圆中,的圆心角所对弧的弧长是( )AcmBcmCcmDcm第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,一次函数的图像与x轴,y轴分别相交于点A,点B,将它绕点O逆时针旋转90°后,与x轴相交于点C,我们将图像过点A,B,C的二次函数叫做与这个一次函数关联的二次函数如果一次函数的关联二次函数是(),那么这个一次函数的解析式为_2、如图,AB是半圆O的直径,点D在半圆O上,C是弧BD上的一个动点,连接AC,过D点作于H连接BH,则在点C移动的过程中,线段BH的最小值是_3、如图,将半径为的圆形纸片沿一条弦折叠,折叠后弧的中点与圆心重叠,则弦的长度为_4、到点的距离等于8厘米的点的轨迹是_5、如图,是由绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且的度数为100°,则的度数是_三、解答题(5小题,每小题10分,共计50分)1、如图,将一个直径AB等于12厘米的半圆绕着点A逆时针旋转60°后,点B落到了点C的位置,半圆扫过部分的图形如阴影部分所示(1)阴影部分的周长;(2)阴影部分的面积(结果保留)2、如图,AB是O的直径,点C是O上一点,连接BC,半径OD弦BC(1)求证:弧AD=弧CD;(2)连接AC、BD相交于点F,AC与OD相交于点E,连接CD,若O的半径为5,BC=6,求CD和EF的长3、已知:如图,A为上的一点求作:过点A且与相切的一条直线作法:连接OA;以点A为圆心,OA长为半径画弧,与的一个交点为B,作射线OB;以点B为圆心,OA长为半径画弧,交射线OB于点P(不与点O重合);作直线PA直线PA即为所求(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接BA由作法可知点A在以OP为直径的圆上( )(填推理的依据)OA是的半径,直线PA与相切( )(填推理的依据)4、如图,在RtABC中,BAC = 90°,AB = k·AC,ADE是由ABC绕点A逆时针旋转某个角度得到的,BC与DE交于点F,直线BD与EC交于点G(1)求证:BD = k·EC;(2)求CGD的度数;(3)若k = 1(如图),求证:A,F,G三点在同一直线上5、如图,在等边中,D为BC边上一点,连接AD,将沿AD翻折得到,连接BE并延长交AD的延长线于点F,连接CF(1)若,求的度数;(2)若,求的大小;(3)猜想CF,BF,AF之间的数量关系,并证明-参考答案-一、单选题1、D【分析】根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可【详解】人工湖面积尽量小,圆以AB为直径构造,设圆心为O,过点B作BC ,垂足为C,A,P分别位于B的西北方向和东北方向,ABC=PBC=BOC=BPC=45°,OC=CB=CP=20,OP=40,OB=,最小的距离PE=PO-OE=40 - 20(m),故选D【点睛】本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键2、C【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出【详解】解:A、不是轴对称图形,是中心对称图形,故A选项不符合题意;B、是轴对称图形,不是中心对称图形,故B选项不符合题意;C、既是轴对称图形,又是中心对称图形,故C选项符合题意;D、是轴对称图形,但不是中心对称图形,故D选项不符合题意故选:C【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合3、B【分析】根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得【详解】解:弦ABCD,CD过圆心O,AM=BM,即选项A、C、D选项说法正确,不符合题意,当根据已知条件得CM和DM不一定相等,故选B【点睛】本题考查了垂径定理,解题的关键是掌握垂径定理4、B【分析】根据,点D、E分别是AB、AC的中点得出DAE=90°,AD=AE=,可证DAB=EAC,再证DABEAC(SAS),可判断AECADB正确;作以点A为圆心,AE为半径的圆,当CP为A的切线时,CP最大,根据AECADB,得出DBA=ECA,可证P=BAC=90°,CP为A的切线,证明四边形DAEP为正方形,得出PE=AE=3,在RtAEC中,CE=,可判断CP存在最大值为正确;AECADB,得出BD=CE=,在RtBPC中,BP最小=可判断BP存在最小值为不正确;取BC中点为O,连结AO,OP,AB=AC=6,BAC=90°,BP=CO=AO=,当AECP时,CP与以点A为圆心,AE为半径的圆相切,此时sinACE=,可求ACE=30°,根据圆周角定理得出AOP=2ACE=60°,当ADBP时,BP与以点A为圆心,AE为半径的圆相切,此时sinABD=,可得ABD=30°根据圆周角定理得出AOP=2ABD=60°,点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,L可判断点P运动的路径长为正确即可【详解】解:,点D、E分别是AB、AC的中点DAE=90°,AD=AE=,DAB+BAE=90°,BAE+EAC=90°,DAB=EAC,在DAB和EAC中,DABEAC(SAS),故AECADB正确;作以点A为圆心,AE为半径的圆,当CP为A的切线时,CP最大,AECADB,DBA=ECA,PBA+P=ECP+BAC,P=BAC=90°,CP为A的切线,AECP,DPE=PEA=DAE=90°,四边形DAEP为矩形,AD=AE,四边形DAEP为正方形,PE=AE=3,在RtAEC中,CE=,CP最大=PE+EC=3+,故CP存在最大值为正确;AECADB,BD=CE=,在RtBPC中,BP最小=,BP最短=BD-PD=-3,故BP存在最小值为不正确;取BC中点为O,连结AO,OP,AB=AC=6,BAC=90°,BP=CO=AO=,当AECP时,CP与以点A为圆心,AE为半径的圆相切,此时sinACE=,ACE=30°,AOP=2ACE=60°,当ADBP时,BP与以点A为圆心,AE为半径的圆相切,此时sinABD=,ABD=30°,AOP=2ABD=60°,点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,POP=POA+AOP=60°+60°=120°,L故点P运动的路径长为正确;正确的是故选B【点睛】本题考查图形旋转性质,线段中点定义,三角形全等判定与性质,圆的切线,正方形判定与性质,勾股定理,锐角三角函数,弧长公式,本题难度大,利用辅助线最长准确图形是解题关键5、A【分析】连结OC,根据切线长性质DC=AC,OC平分ACD,求出OCD=OCA=30°,利用在RtABC中,AC=ABtanB=3×,在RtAOC中,ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,再求出扇形面积,利用割补法求即可【详解】解:连结OC,以边上一点为圆心作,恰与边,分别相切于点A, ,DC=AC,OC平分ACD,ACD=90°-B=60°,OCD=OCA=30°,在RtABC中,AC=ABtanB=3×,在RtAOC中,ACO=30°,AO=ACtan30°=,OD=OA=1,DC=AC=,DOC=360°-OAC-ACD-ODC=360°-90°-90°-60°=120°,S阴影=故选择A【点睛】本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键6、D【分析】由平角的性质得出BCD=116°,再由内接四边形对角互补得出A=64°,再由圆周角定理即可求得BOD=2A=128°【详解】四边形内接于又故选:D【点睛】本题考查了圆内接四边形的性质、圆周角定理,圆内接四边形的对角互补,并且任何一个外角都等于它的内对角;在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半7、A【分析】分析:连接OA、OB,根据圆周角定理,易知AOB=60°;因此ABO是等边三角形,即可求出O的半径【详解】解:连接BO,并延长交O于D,连结DC,A=30°,D=A=30°,BD为直径,BCD=90°,在RtBCD中,BC=3,D=30°,BD=2BC=6,OB=3故选A【点睛】本题考查了圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质,掌握圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质是解题的关键8、A【详解】解:A、既是轴对称图形又是中心对称图形,此项符合题意;B、是中心对称图形,不是轴对称图形,此项不符题意;C、是轴对称图形,不是中心对称图形,此项不符题意;D、是轴对称图形,不是中心对称图形,此项不符题意;故选:A【点睛】本题考查了中心对称图形和轴对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键9、C【分析】连接,过点作于点,交于点,先由垂径定理求出的长,再根据勾股定理求出的长,进而得出的长即可【详解】解:连接,过点作于点,交于点,如图所示:则,的直径为,在中,即水的最大深度为,故选:C【点睛】本题考查了垂径定理、勾股定理等知识,解题的关键是根据题意作出辅助线,构造出直角三角形是解答此题的关键10、C【分析】直接根据题意及弧长公式可直接进行求解【详解】解:由题意得:的圆心角所对弧的弧长是;故选C【点睛】本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键二、填空题1、【分析】由题意可知二次函数与坐标轴的三个交点坐标为(0,k),(1,0),(-k,0),将其代入抛物线()即可得m、k的二元一次方程组,即可解出,故这个一次函数的解析式为【详解】一次函数与y轴的交点为(0,k),与x轴的交点为(1,0)绕O点逆时针旋转90°后,与x轴的交点为(-k,0)即(0,k),(1,0),(-k,0)过抛物线()即得将代入有整理得解得k=3或k=-1(舍)将k=3代入得故方程组的解为则一次函数的解析式为故答案为:【点睛】本题考查了一次函数和二次函数的图象及其性质,解二元一次方程组,结合旋转的性质以及图象得出抛物线与坐标轴的三个交点坐标是解题的关键2、#【分析】连接,取的中点,连接,由题可知点在以为圆心,为半径的圆上,当、三点共线时,最小;求出,在中,所以,即为所求【详解】解:连接,取的中点,连接,点在以为圆心,为半径的圆上,当、三点共线时,最小,是直径,在中,故答案为:【点睛】本题考查点的运动轨迹,勾股定理,解题的关键是能够根据点的运动情况,确定点的运动轨迹3、【分析】连接OC交AB于点D,再连接OA根据轴对称的性质确定,OD=CD;再根据垂径定理确定AD=BD;再根据勾股定理求出AD的长度,进而即可求出AB的长度【详解】解:如下图所示,连接OC交AB于点D,再连接OA折叠后弧的中点与圆心重叠,OD=CDAD=BD圆形纸片的半径为10cm,OA=OC=10cmOD=5cmcmBD=cmcm故答案为:【点睛】本题考查轴对称的性质,垂径定理,勾股定理,综合应用这些知识点是解题关键4、以点为圆心,8厘米长为半径的圆【分析】由题意直接根据圆的定义进行分析即可解答【详解】到点的距离等于8厘米的点的轨迹是:以点为圆心,2厘米长为半径的圆故答案为:以点为圆心,8厘米长为半径的圆【点睛】本题主要考查了圆的定义,正确理解定义是关键,注意掌握圆的定义是在同一平面内到定点的距离等于定长的点的集合5、35°【分析】根据旋转的性质可得AODBOC30°,AODO,再求出BOD,ADO,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解【详解】解:COD是AOB绕点O顺时针旋转30°后得到的图形,AODBOC30°,AODO,AOC100°,BOD100°30°×240°,ADOA(180°AOD)(180°30°)75°,由三角形的外角性质得,BADOBOD75°40°35°故答案为:35°【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键三、解答题1、(1)16(2)24【分析】(1)由阴影部分的周长两个半圆弧的长度+弧BC的长,利用弧长公式可求解;(2)由面积的和差关系可求解(1)解:阴影部分的周长2××2×6+16;(2)解:阴影部分的面积S半圆+S扇形BACS半圆S扇形BAC,阴影部分的面积24答:阴影部分的周长为16,阴影部分的面积为24【点睛】本题考查了扇形的弧长公式和面积公式,如果扇形的圆心角是n°,扇形的半径为r,则扇形的弧长l的计算公式为:,扇形的面积公式:2、(1)见解析;(2)CD=,EF=1【分析】(1)连接OC,根据圆的性质,得到OB=OC;根据等腰三角形的性质,得到;根据平行线的性质,得到;在同圆和等圆中,根据相等的圆心解所对的弧等即得证(2)根据直径所对的圆周角是直角求出ACB=90°,根据平行线的性质求得AEO=ACB=90°,利用勾股定理求出AC=8,根据垂径定理求得EC=AE=4,根据中位线定理求出OE,在RtCDE中,根据勾股定理求出CD,因为,所以EDFBCF,最后根据似的性质,列方程求解即可【详解】(1)解:连结OC1=B2=COB =OCB=C1=2弧AD=弧CD(2)AB是的直径ACB=90°AEO=ACB=90°RtABC中,ACB=90°,BC=6,AB=10 AC=8半径ODAC于E EC=AE=4 OE=ED=2 由勾股定理得,CD=EDFCBF设EF=x,则FC=4-xEF=1,经检验符合题意.【点睛】本题考查了圆的综合题,圆的有关性质:圆的半径相等;同圆或等圆中,相等的圆心角所对的弧等;直径所对的圆周角是直角;垂径定理;平行线的性质,勾股定理,三角形中位线定理,三角形相似的判定和性质等知识,正确理解圆的相关性质是解题的关键3、(1)图见解析;(2)直径所对的圆周角是直角,切线的判定定理【分析】(1)根据所给的几何语言作出对应的图形即可;(2)根据圆周角定理和切线的判定定理解答即可【详解】解:(1)补全图形如图所示,直线AP即为所求作;(2)证明:连接BA,由作法可知,点A在以OP为直径的圆上,(直径所对的圆周角是直角),OA是的半径,直线PA与相切(切线的判定定理),故答案为:直径所对的圆周角是直角,切线的判定定理【点睛】本题考查基本作图-画圆、圆周角定理、切线的判定定理,熟知复杂作图是在基本作图的基础上进行作图,一般是结合几何图形的性质,因此熟练掌握基本图形的性质和切线的判定是解答的关键4、(1)见解析;(2)90°;(3)见解析【分析】(1)由旋转的性质可得对应边相等对应角相等,由相似三角形的判定得出ABDACE,由相似三角形的性质即可得出结论 ;(2)由(1)证得ABDACE,和等腰三角形的性质得出,进而推出,由四边形的内角和定理得出结论;(3)连接CD,由旋转的性质和等腰三角形的性质得出,CGDG,FCFD,由垂直平分线的判断得出A,F,G都在CD的垂直平分线上,进而得出结论【详解】证明:(1)ADE是由ABC绕点A逆时针旋转某个角度得到的,ABAD,ACAE,BADCAE,ABDACE,AB = k·AC,BD = k·EC;(2)由(1)证得ABDACE,ABAD,ACAE,BAC = 90°,在四边形ADGE中,BAC = 90°,CGD360°180°90°90°;(3)连接CD,如图:ADE是由ABC绕点A逆时针旋转某个角度得到的,BAC = 90°,AB = k·AC,当k = 1时,ABC和ADE为等腰直角三角形,CGDG,FCFD,点A、点G和点F在CD的垂直平分线上, A,F,G三点在同一直线上【点睛】本题考查了相似三角形的性质和判定,旋转的性质,等腰直角三角形的性质和判定,垂直平分线的判定等知识点,熟练掌握相似三角形的判定和垂直平分线的判定是解题的关键5、(1)20°;(2);(3)AF= CF+BF,理由见解析【分析】(1)由ABC是等边三角形,得到AB=AC,BAC=ABC=60°,由折叠的性质可知,EAD=CAD=20°,AC=AE,则BAE=BAC-EAD-CAD=20°,AB=AE,CBF=ABE-ABC=20°;(2)同(1)求解即可;(3)如图所示,将ABF绕点A逆时针旋转60°得到ACG,先证明AEFACF得到AFE=AFC,然后证明AFE=AFC=60°,得到BFC=120°,即可证明F、C、G三点共线,得到AFG是等边三角形,则AF=GF=CF+CG=CF+BF【详解】解:(1)ABC是等边三角形,AB=AC,BAC=ABC=60°,由折叠的性质可知,EAD=CAD=20°,AC=AE,BAE=BAC-EAD-CAD=20°,AB=AE,CBF=ABE-ABC=20°;(2)ABC是等边三角形,AB=AC,BAC=ABC=60°,由折叠的性质可知,AC=AE, ,AB=AE,;(3)AF= CF+BF,理由如下:如图所示,将ABF绕点A逆时针旋转60°得到ACG,AF=AG,FAG=60°,ACG=ABF,BF=CG在AEF和ACF中,AEFACF(SAS),AFE=AFC,CBF+BCF+BFD+CFD=180°,CAF+CFA+ACD+CFD=180°,BFD=ACD=60°,AFE=AFC=60°,BFC=120°,BAC+BFC=180°,ABF+ACF=180°,ACG+ACF=180°,F、C、G三点共线,AFG是等边三角形,AF=GF=CF+CG=CF+BF【点睛】本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键