2021-2022学年浙教版初中数学七年级下册第五章分式专题练习试题(含答案及详细解析).docx
-
资源ID:28152118
资源大小:196.15KB
全文页数:13页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年浙教版初中数学七年级下册第五章分式专题练习试题(含答案及详细解析).docx
初中数学七年级下册第五章分式专题练习(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、一种花瓣的花粉颗粒直径约为0.00000065米,0.00000065用科学记数法表示为()A6.5×105B6.5×106C6.5×107D65×1062、新冠病毒的直径约为125纳米,已知1纳米=0.000001毫米,则125纳米用科学记数法表示为()A毫米B毫米C毫米D毫米3、若,则可用含和的式子表示为( )ABCD4、计算的结果为( )A1BCD5、若a0.52,b52,c(5)0,那么a、b、c三数的大小为()AacbBcabCabcDcba6、下列说法正确的是( )A没有意义B任何数的0次幂都等于1CD若,则7、计算的正确结果是( )A2021BCD8、据报道,中国医学研究人员通过研究获得了纯化灭活新冠病毒疫苗,该疫苗在低温电镜下呈椭圆形颗粒,最小直径约为90nm,已知1nm109m,则90nm用科学记数法表示为( )A0.09×106mB0.9×107mC9×108mD90×109m9、若 ,则 ( )ABCD10、如果x1,那么x1,x,x2的大小关系是()Ax1xx2Bxx1x2Cx2xx1Dx2x1x二、填空题(5小题,每小题4分,共计20分)1、若(m3)01,则m的取值为_2、计算:_3、有一工程需在x天内完成如果甲单独工作,刚好能够按期完成:如果乙单独工作,就要超过规定日期3天现在甲、乙合作2天后,余下的工程由乙单独完成,刚好在规定日期完成,则依题意列出的方程是_4、若分式有意义,则x的取值范围是 _5、某种生物细胞的直径约为0.000000076米,用科学记数法表示为 _米三、解答题(5小题,每小题10分,共计50分)1、计算:2、计算:3、解方程:4、(1)+()2+(3.14)0()2;(2)已知(2x1)290,求x的值5、计算:-参考答案-一、单选题1、C【分析】科学记数法的表示形式为a×10n的形式,其中1|a|<10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数【详解】解:0.00000065的小数点向右移动7位得到6.5,所以数字0.00000065用科学记数法表示为6.5×107,故选C【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|<10,n为整数,表示时关键要正确确定a的值以及n的值2、C【分析】科学记数法的表示形式为的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于10时,n是正整数;当原数的绝对值小于1时,n是负整数【详解】125纳米=125×0.000001毫米=0.000125毫米=毫米,故选:C【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中1|a|10,n为整数,表示时关键要确定a的值以及n的值3、D【分析】先将转化为关于b的整式方程,然后用a、s表示出b即可【详解】解:,s1,故选:D【点睛】本题考查解分式方程,解答的关键是熟练掌握分式方程的一般步骤4、B【分析】先把分母2a变形为(a2),即通分,再按分式的加减运算法则计算即可【详解】解:原式=;故选:B【点睛】此题考查的是分式的加减运算,化为同分母进行计算是解决此题关键5、B【分析】直接利用负整数指数幂的性质以及零指数幂的性质分别化简得出答案【详解】a0.520.25,b52,c(5)01,cab故选:B【点睛】此题主要考查了负整数指数幂的性质以及零指数幂的性质,正确化简各数是解题关键6、D【分析】根据除0之外的任何数的零次幂都等于1即可判定A、B、D,根据幂的混合运算法则即可判断C【详解】解:A、,有意义,故此选项不符合题意;B、除0外的任何数的0次幂都等于1,故此选项不符合题意;C、,故此选项不符合题意;D、若,则,故此选项符合题意;故选D【点睛】本题主要考查了幂的运算,零指数幂,解题的关键在于能够熟练掌握相关计算法则7、D【分析】根据负整数指数幂的性质计算即可;【详解】;故选D【点睛】本题主要考查了负整数指数幂,准确计算是解题的关键8、C【分析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同【详解】解:90nm=90×10-9m=9×10-8m故选:C【点睛】此题考查了科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要确定a的值以及n的值9、B【分析】先利用的值,求出,再利用负整数指数幂的运算法则,得到的值【详解】解:,或(舍去),故选:B【点睛】本题主要是考查了开二次根式以及负整数指数幂的运算法则,熟练掌握负整数指数幂的运算法则:,是解决本题的关键10、A【分析】根据,即可得到,由此即可得到答案【详解】解:,故选A【点睛】本题主要考查了有理数比较大小,负整数指数幂,解题的关键在于能够熟练掌握实数比较大小的方法二、填空题1、m3【分析】利用零指数幂的法则判断即可确定出的值【详解】解:,则故答案为:【点睛】此题考查了零指数幂,熟练掌握零指数幂的法则是解本题的关键2、【分析】先通分再按照同分母分式加减计算即可【详解】故答案为:【点睛】本题考查异分母分式的加减法,一般先通分把异分母分式化成同分母分式再进行计算3、【分析】有一工程需在x天内完成,则甲的工作效率为 ,乙的工作效率为 ,则前两天完成的工作量为,乙单独做的工作量为,由此求解即可【详解】解:有一工程需在x天内完成,则甲的工作效率为 ,乙的工作效率为 ,由题意得: ,故答案为:【点睛】本题主要考查了分式方程的实际应用,解题的关键在于能够准确找到等量关系列出方程4、【分析】根据分母不等于零分式有意义,可得答案【详解】解:分式有意义, 解得,故答案为:【点睛】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键5、7.6×108【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】0.000000076米7.6×108米,故答案为:7.6×108【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定三、解答题1、1【分析】先计算零指数幂和负整数指数幂,然后根据有理数的混合计算法则求解即可【详解】解:【点睛】本题主要考查了零指数幂,负整数指数幂,有理数的混合计算,解题的关键在于能够熟练掌握相关计算法则2、【分析】根据积的乘方法则、负整数指数幂的运算法则把原式变形,再根据分式的乘除法法则计算,得到答案【详解】解:原式【点睛】本题考查了分式的乘除法、负整数指数幂,掌握分式的乘除法法则是解题的关键3、【分析】根据解分式方程的一般步骤:去分母转换为整式方程,解方程检验即可【详解】解:去分母得:,去括号得:,移项合并得:,经检验是分式方程的解【点睛】本题考查了解分式方程,将分式方程去分母转换为整式方程是解题的关键,注意分式方程需要验根4、(1);(2)或【分析】(1)先计算算术平方根、立方根、负整数指数幂、零指数幂,再计算加减法即可得;(2)利用平方根解方程即可得【详解】解:(1)原式,;(2),或,或【点睛】本题考查了立方根、负整数指数幂、零指数幂、利用平方根解方程等知识点,熟练掌握各运算法则是解题关键5、3【分析】此题涉及到负整数指数幂,0指数幂,开方,分别根据各个知识点计算出结果,再计算加减法即可【详解】解:原式=;【点睛】此题主要考查了负整数指数幂,0指数幂,开方,主要是同学们要准确把握各个知识点