2021-2022学年度京改版八年级数学下册第十六章一元二次方程课时练习试题(名师精选).docx
-
资源ID:28152528
资源大小:294.30KB
全文页数:16页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年度京改版八年级数学下册第十六章一元二次方程课时练习试题(名师精选).docx
京改版八年级数学下册第十六章一元二次方程课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、用配方法解方程x24x1,变形后结果正确的是( )A(x2)25B(x2)22C(x2)25D(x2)222、已知关于x的一元二次方程:x22xm0有两个不相等的实数根x1,x2,则( )Ax1x20Bx1x20Cx1x21Dx1x213、若x1是关于x的一元二次方程ax2+bx20(a0)的一个根,则20212a+2b的值等于()A2015B2017C2019D20224、若一元二次方程有一个根为1,则下列等式成立的是( )ABCD5、一个三角形两边的长分别等于一元二次方程的两个实数根,则这个三角形的第三条边不可能为( )A7B11C15D196、为落实教育优先发展,南充市财政一般公共预算2019年教育经费投入93.15亿元,2021年教育经费投入99.45亿元,设南充市财政一般公共预算教育经费投入年平均增长率为x,则可列方程为( )ABCD7、某地区计划举行校际篮球友谊赛,赛制为主客场形式(每两队之间在主客场各比赛一场),已知共比赛了30场次,则共有()支队伍参赛A4B5C6D78、若方程的一个根为,则的值是( )A7BC4D9、方程2x2-3x=2的一次项系数和常数项分别是( )A3和2B-3和2C3和-2D-3和-210、已知是一元二次方程的一个根,则代数式的值为( )A2020B2021C2022D2023第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知是一元二次方程的一个根,则该方程的另一个根是_2、若关于x的一元二次方程有两个实数根,则m 的取值范围是_3、关于的一元二次方程的一个根是,则方程的另一根是_4、若,是方程的两个根,则_5、若为整数,关于的一元二次方程有实数根,则整数的最大值为_三、解答题(5小题,每小题10分,共计50分)1、在商场中,被称为“国货之星”某运动品牌的鞋子,每天可销售20双,每双可获利40元为庆祝新年,对该鞋子进行促销活动,该鞋子每双每降价1元,平均每天可多售出2双若设该鞋子每双降价x元,请解答下列问题:(1)用含x的代数式表示:降价x元后,每售出一双该鞋子获得利润是 元,平均每天售出 双该鞋子; (2)在此次促销活动中,每双鞋子降价多少元,可使该品牌的鞋子每天的盈利为1250元?2、解方程:3x214x3、解方程:(1)(x5)2(23x)2;(2)x210x+160;(3)2x2x204、(1)计算:(2)计算:(3)解方程:(4)解方程:5、用适当的方法解方程(1); (2)-参考答案-一、单选题1、A【分析】方程的两边同时加上一次项系数一半的平方即可,进而即求得答案【详解】解:x24x1即故选A【点睛】本题考查了配方法解一元二次方程,掌握配方法是解题的关键2、D【分析】利用根与系数关系,得到两根之和,即可判断A选项,利用根的判别式,求出的取值范围,利用两根之积,得到,最后即可判断出正确答案【详解】解:由题意可知:两根之和:,故A错误,x22xm0有两个不相等的实数根,解得:, 由根与系数的关系可知:,只有D选项正确,故选:D【点睛】本题主要是考查了根与系数的关系以及根的判别式,熟练利用根与系数的关系,求出两根之和与两根之积,以及利用根的判别式,求出参数范围,是解决本题的关键3、B【分析】根据一元二次方程根的定义将代入方程ax2+bx20可得,即,整体代入到代数式中求解即可,一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解【详解】解:将代入方程ax2+bx20可得,即20212a+2b=故选B【点睛】本题考查了一元二次方程的解,代数式求值,整体代入是解题的关键4、D【分析】将代入方程即可得出答案【详解】解:由题意,将代入方程得:,故选:D【点睛】本题考查了一元二次方程的根,熟记一元二次方程的根的定义(使方程左、右两边相等的未知数的值就是这个一元二次方程的解,也叫做一元二次方程的根)是解题关键5、D【分析】先根据一元二次方程的解法得到这个三角形的两边长,然后再利用三角形三边关系可排除选项【详解】解:,解得:,这个三角形的两边的长为6和11,第三边长x的范围为5x17;故选D【点睛】本题主要考查一元二次方程的解法及三角形三边关系,熟练掌握一元二次方程的解法及三角形三边关系是解题的关键6、A【分析】根据题意可直接进行求解【详解】解:由题意可列方程为;故选A【点睛】本题主要考查一元二次方程的应用,熟练掌握增长率问题是解题的关键7、C【分析】由于每两队之间都需在主客场各赛一场,即每个队都要与其余队比赛一场等量关系为:球队的个数×(球队的个数1)=30,把相关数值代入计算即可【详解】解:有x个球队参加比赛,根据题意可列方程为:x(x1)=30,解得:或(舍去);共有6支队伍参赛;故选:C【点睛】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是读懂题意,得到总场数的等量关系8、D【分析】将代入方程求解即可【详解】解:将代入可得:,解得:,故选:D【点睛】题目主要考查方程与根的关系,将根代入方程求解是解题关键9、D【分析】先将方程变形,再根据一元二次方程方程的一般形式“一元二次方程的一般形式是,其中是二次项,a是二次项系数,bx是一次项,b是一次项系数,c是常数项”进行解答即可得【详解】解:一次项系数为:-3,常数项为:-2,故选D【点睛】本题考查了一元二次方程的一次项系数和常数项,解题的关键是熟记一元二次方程的一般形式10、B【分析】把代入一元二次方程得到,再利用整体代入法解题即可【详解】解:把代入一元二次方程得,故选:B【点睛】本题考查一元二次方程的解、已知式子的值求代数式的值、整体思想等知识,是重要考点,难度较易,掌握相关知识是解题关键二、填空题1、【分析】设该方程的另一个根为结合一元二次方程根与系数的关系可得:再解一次方程即可得到答案.【详解】解:是一元二次方程的一个根,设该方程的另一个根为 则 所以该方程的另一个根是 故答案为:【点睛】本题考查的是一元二次方程的根与系数的关系,掌握“利用一元二次方程的根与系数的关系求解方程的根或方程中未知系数的值”是解本题的关键.2、【分析】根据一元二次方程 (为常数)的根的判别式,解不等式即可求得m 的取值范围【详解】解:关于x的一元二次方程有两个实数根,=解得故答案为:【点睛】本题考查了一元二次方程 (为常数)的根的判别式,理解根的判别式对应的根的三种情况是解题的关键当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根3、【分析】设另一根为,根据一元二次方程根与系数的关系,可得 ,由,解一元一次方程即可求得方程的另一根【详解】解:关于的一元二次方程的一个根是,设另一根为,故答案为:【点睛】本题考查了一元二次方程根与系数的关系,掌握是解题的关键4、2【分析】根据一元二次方程根与系数关系求解即可【详解】解:,是方程的两个根,则,故答案为:2【点睛】本题考查了一元二次方程根与系数关系,解题关键是明确一元二次方程两根之和等于5、3【分析】根据一元二次方程的二次项的系数不等于0、根的判别式求出的取值范围,由此即可得出答案【详解】解:由题意得:,解得,且,为整数,整数的最大值为3,故答案为:3【点睛】本题考查了一元二次方程根的判别式等知识点,熟练掌握一元二次方程根的判别式是解题关键三、解答题1、(1)(40-x),;(2)15元【分析】(1)根据利用40 减去降价,可得每售出一双该鞋子获得利润,再用20加上多售出的数量,即可求解;(2)根据该品牌的鞋子每天的盈利为1250元,列出方程,即可求解【详解】解:(1)根据题意得:每售出一双该鞋子获得利润是(40-x);平均每天售出双该鞋子; (2)由题意可列方程(40-x)(202x)1250 x2-30x2250,(x-15)20,解得x1x215 , 答:每双鞋子降价15元,可使该品牌的鞋子每天的盈利为1250元【点睛】本题主要考查了一元二次方程的应用,明确题意,准确得到等量关系是解题的关键2、【分析】对原方程进行移项,找出a、b、c的值,根据求根公式即可得出方程的解【详解】解:原方程移项得:,【点睛】题目主要考查解一元二次方程的方程:公式法,熟练掌握求根公式是解题关键3、(1)x1,x2;(2)x12,x28;(3)x1,x2【分析】(1)直接利用因式分解的方法解一元二次方程即可;(2)直接利用因式分解的方法解一元二次方程即可;(3)直接利用因式分解的方法解一元二次方程即可【详解】解:(1)(x5)2(23x)2,解得:x1,x2;(2)x210x+160,(x2)(x8)0,x20或x80,解得x12,x28;(3),【点睛】本题主要考查了解一元二次方程 ,解题的关键在于能够熟练掌握解一元二次方程的方法4、(1);(2);(3);(4)【分析】(1)根据算术平方根的性质、负整指数幂的性质、正弦定义等知识计算解题;(2)根据二次根式的性质、二次根式的乘除法法则、完全平方公式等知识计算解题,(3)利用配方法解题;(4)利用提公因式法结合整体思想解题【详解】解:(1);(2);(3)(4)或【点睛】本题考查实数的混合运算、二次根式的乘除法、解一元二次方程等知识,涉及正弦、整体思想等知识,是重要考点,难度一般,掌握相关知识是解题关键5、(1),(2)【分析】用因式分解法解方程即可【详解】解:(1), , , ,;(2),【点睛】本题考查了一元二次方程解法,解题关键是熟练运用因式分解法解方程