欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2021-2022学年度强化训练沪教版七年级数学第二学期第十四章三角形综合测评试题.docx

    • 资源ID:28152931       资源大小:1.17MB        全文页数:35页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2021-2022学年度强化训练沪教版七年级数学第二学期第十四章三角形综合测评试题.docx

    沪教版七年级数学第二学期第十四章三角形综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图点在同一条直线上,都是等边三角形,相交于点O,且分别与交于点,连接,有如下结论:;为等边三角形;.其中正确的结论个数是( )A1个B2个C3个D4个2、有下列说法:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;等腰三角形一腰上的高与底边的夹角与顶角互余;等腰三角形顶角的平分线是它的对称轴;等腰三角形两腰上的中线相等其中正确的说法有( )个A1B2C3D43、下列叙述正确的是( )A三角形的外角大于它的内角B三角形的外角都比锐角大C三角形的内角没有小于60°的D三角形中可以有三个内角都是锐角4、下列长度的三条线段能组成三角形的是( )A2,3,6B2,4,7C3,3,5D3,3,75、如图,ACBC,C,DEAC于E,FDAB于D,则EDF等于()AB90°C90°D180°26、如图,在中,AD是角平分线,且,若,则的度数是( )A45°B50°C52°D58°7、已知,的相关数据如图所示,则下列选项正确的是( )ABCD8、如图,BD是的角平分线,交AB于点E若,则的度数是( )A10°B20°C30°D50°9、我们称网格线的交点为格点如图,在4×4的长方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得ABC是等腰直角三角形,则满足条件的格点C的个数是()A3B4C5D610、如图:将一张长为40cm的长方形纸条按如图所示折叠,若AB=3BC,则纸条的宽为( ) A12B14C16D18第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,BD,CE是等边三角形ABC的中线,BD,CE交于点F,则_°2、如图,与的顶点A、B、D在同一直线上,延长分别交、于点F、G若,则_3、如图,_4、若一个立体图形从正面看和从左面看都是等腰三角形,从上面看是带有圆心的圆,则这个立体图形是_5、一个三角形的其中两个内角为,则这个第三个内角的度数为_三、解答题(10小题,每小题5分,共计50分)1、在等腰中,点D是BC边上的一个动点(点D不与点B,C重合),连接AD,作等腰,使,点D,E在直线AC两旁,连接CE(1)如图1,当时,直接写出BC与CE的位置关系;(2)如图2,当时,过点A作于点F,请你在图2中补全图形,用等式表示线段BD,CD,之间的数量关系,并证明2、如图,在中,AD是BC边上的高,CE平分,若,求的度数3、已知:直线AB、CR被直线UV所截,直线UV交直线AB于点B,交直线CR于点D,ABU+CDV180°(1)如图1,求证:ABCD;(2)如图2,BEDF,MEBABE+5°,FDR35°,求MEB的度数;(3)如图3,在(2)的条件下,点N在直线AB上,分别连接EN、ED,MGEN,连接ME,GMEGEM,EBD2NEG,EB平分DEN,MHUV于点H,若EDCCDB,求GMH的度数4、已知:如图,点D为BC的中点,求证:是等腰三角形5、如图,在等边三角形ABC中,点P为ABC内一点,连接AP,BP,CP,将线段AP绕点A 顺时针旋转60°得到 ,连接 (1)用等式表示 与CP的数量关系,并证明;(2)当BPC120°时, 直接写出 的度数为 ;若M为BC的中点,连接PM,请用等式表示PM与AP的数量关系,并证明6、如图,点D在AC上,BC,DE交于点F,(1)求证:;(2)若,求CDE的度数7、如图,点D,E在ABC的边BC上,ABAC,ADAE,求证:BDCE8、如图,在中,AD平分,于点E求证:9、如图,在中,点D、E分别在边AB、AC上,BE与CD交于点F,求和的度数10、在复习课上,老师布置了一道思考题:如图所示,点M,N分别在等边的边上,且,交于点Q求证:同学们利用有关知识完成了解答后,老师又提出了下列问题:(1)若将题中“”与“”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由(2)若将题中的点M,N分别移动到的延长线上,是否仍能得到?请你画出图形,给出答案并说明理由-参考答案-一、单选题1、D【分析】由SAS即可证明,则正确;有CAE=CDB,然后证明ACMDCN,则正确;由CM=CN,MCN=60°,即可得到为等边三角形,则正确;由ADCE,则DAO=NEO=CBN,由外角的性质,即可得到答案【详解】解:DAC和EBC均是等边三角形,AC=CD,BC=CE,ACD=BCE=60°,ACD+DCE=BCE+DCE,即ACE=BCD,MCN=180°-ACD-BCE=60°,在ACE和DCB中,ACEDCB(SAS),则正确;AE=BD,CAE=CDB,在ACM和DCN中,ACMDCN(ASA),CM=CN,;则正确;MCN=60°,为等边三角形;则正确;DAC=ECB=60°,ADCE,DAO=NEO=CBN,;则正确;正确的结论由4个;故选D【点睛】本题考查了等边三角形的性质与判定,全等三角形的判定与性质,平行线的性质与判定,综合性较强,但难度不是很大,准确识图找出全等三角形是解题的关键2、B【分析】根据轴对称的性质,轴对称图形的概念,等腰三角形的性质判断即可【详解】解:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线,说法正确;等腰三角形一腰上的高与底边的夹角与底角互余,原说法错误;等腰三角形的顶角平分线在它的对称轴上,原说法错误;等腰三角形两腰上的中线相等,说法正确综上,正确的有,共2个,故选:B【点睛】本题考查了轴对称的性质及等腰三角形的性质,掌握轴对称的性质,轴对称图形的概念,等腰三角形的性质是解题的关键3、D【分析】结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.【详解】解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;三角形的内角可以小于60°,一个三角形的三个角可以为: 故C不符合题意;三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;故选D【点睛】本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.4、C【分析】根据三角形的三边关系,逐项判断即可求解【详解】解:A、因为 ,所以不能组成三角形,故本选项不符合题意;B、因为 ,所以不能组成三角形,故本选项不符合题意;C、因为 ,所以能组成三角形,故本选项符合题意;D、因为 ,所以不能组成三角形,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键5、B【分析】ACBC,C,DEAC于E,FDAB于D,有,即可求得角度【详解】解:由题意知:,故选B【点睛】本题考查了等腰三角形的性质,几何图形中角度的计算解题的关键在于确定各角度之间的数量关系6、A【分析】根据角平分线性质求出DCA,再根据等腰三角形的性质和三角形的内角和定理求解C和B即可【详解】解:AD是角平分线,DCA=30°,AD=AC,C=(180°DCA)÷2=75°,B=180°BACC=180°60°75°=45°,故选:A【点睛】本题考查角平分线的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握等腰三角形的性质是解答的关键7、D【分析】根据三角形内角和定理分别求出三个三角形中未知角的度数,然后依据全等三角形的判定定理,从三个三角形中寻找条件证明全等,即可得出选项【详解】解:,在与FED中,FED,A、B、C三个选项均不能证明,故选:D【点睛】题目主要考查三角形内角和定理、全等三角形的判定和性质,理解题意,熟练运用全等三角形的判定定理是解题关键8、B【分析】由外角的性质可得ABD20°,由角平分线的性质可得DBC20°,由平行线的性质即可求解.【详解】解:(1)A30°,BDC50°,BDCAABD,ABDBDCA50°30°20°,BD是ABC的角平分线,DBCABD20°,DEBC,EDB=DBC20°,故选:B【点睛】本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键9、A【分析】根据题意,结合图形,分两种情况讨论:AB为等腰直角ABC底边;AB为等腰直角ABC其中的一条腰【详解】解:如图:分情况讨论:AB为等腰直角ABC底边时,符合条件的格点C点有0个;AB为等腰直角ABC其中的一条腰时,符合条件的格点C点有3个故共有3个点,故选:A【点睛】本题考查了等腰三角形的性质和判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想10、B【分析】如图,延长NO交AD的延长线于点P,设BC=x,则AB=3x,利用折叠的性质和等腰直角三角形的性质可表示出纸条的宽MO,NO的长,从而可表示出纸条的长2PN的长,然后根据长方形纸条的长为40,可得到关于x的方程,解方程求出x的值,即可求出纸条的宽【详解】解:如图,延长NO交AD的延长线于点P, 设BC=x,则AB=3x, 折叠, AB=BM=CO=CD=PO=3x, 纸条的宽为:MO=NO=3x+3x+x=7x, 纸条的长为:2PN=2(7x+3x)=20x=40 解得:x=2, 纸条的宽NO=7×2=14 故答案为:B【点睛】此题考查了折叠的性质,等腰直角三角形的性质,一元一次方程应用题,解题的关键是正确分析题目中的等量关系列出方程求解二、填空题1、120【分析】等边三角形中线与角平分线合一,有,由可求得结果【详解】解:是等边三角形BD,CE是等边三角形ABC的中线又故答案为:【点睛】本题考查了等边三角形的性质,角度的计算解题的关键在于熟练利用等边三角形三线合一的性质2、【分析】先证明ABCEDB,可得E=,然后利用三角形外角的性质求解【详解】解:,ABC=D,在ABC和EDB中,ABCEDB,E=,EGF=30°+50°=80°,80°+30°=110°,故答案为:110°【点睛】本题考查了平行线的性质,全等三角形的判定与性质,以及三角形外角的性质,熟练掌握三角形的外角等于不相邻的两个内角和是解答本题的关键3、180度【分析】如图,连接 记的交点为 先证明再利用三角形的内角和定理可得答案.【详解】解:如图,连接 记的交点为 故答案为:【点睛】本题考查的是三角形的内角和定理,作出合适的辅助线构建三角形是解本题的关键.4、圆锥【分析】根据立体图形视图、等腰三角形的性质分析,即可得到答案【详解】根据题意,这个立体图形是圆锥故答案为:圆锥【点睛】本题考查了等腰三角形、圆锥、立体图形视图的知识;解题的关键是熟练掌握立体图形视图的性质,从而完成求解5、60°【分析】依题意,利用三角形内角和为:,即可;【详解】由题得:一个三角形的内角和为:;又已知两个其中的内角为:,; 第三个角为:;故填:【点睛】本题主要考查三角形的内角和,关键在于熟练并运用基本的计算;三、解答题1、(1)(2)或,见解析【分析】(1)根据已知条件求出B=ACB=45°,证明BADCAE,得到ACE=B=45°,求出BCE=ACB+ACE=90°,即可得到结论;(2)根据题意作图即可,证明得到,推出延长EF到点G,使,证明,推出由此得到同理可证(1)解:,B=ACB=45°,即BAD=CAE,BADCAE,ACE=B=45°,BCE=ACB+ACE=90°,;(2)解:如图,补全图形;证明:,又,延长EF到点G,使,如图,同理可证【点睛】此题考查了全等三角形的判定及性质,等腰三角形的性质,熟记全等三角形的判定及性质是解题的关键掌握分类思想解题是难点2、85°【分析】由高的定义可得出ADBADC90,在ACD中利用三角形内角和定理可求出ACB的度数,结合CE平分ACB可求出ECB的度数由三角形外角的性质可求出AEC的度数,【详解】解:AD是BC边上的高,ADBADC90在ACD中,ACB180°ADCCAD180°90°20°70°CE平分ACB,ECBACB35°AEC是BEC的外角,AECB+ECB50°+35°85°答:AEC的度数是85°【点睛】本题考查了三角形内角和定理、角平分线的定义以及三角形外角的性质,利用三角形内角和定理及角平分线的性质,求出ECB的度数是解题的关键3、(1)见详解;(2)MEB40°,(3)GMH=80°【分析】(1)根据等角的补角性质得出ABD=CDV,根据同位角相等两直线平行可得ABCD;(2)根据ABCD;利用内错角相等得出ABD=RDB,根据BEDF,得出EBD=FDB,利用等量减等量差相等得出ABE=FDR,根据FDR35°,可得ABE=FDR=35°即可;(3)设ME交AB于S,根据MGEN,得出NES=GMS=GES,设NES=y°,可得NEG=NES+GES=2NES=2y°,根据EBD2NEG,得出EBD =4NES=4y°,根据EDCCDB,设EDC=x°,得出CDB=7x°,根据ABCD,得出GBE+EBD+CDB=180°,可得35+4y+7x=180根据三角形内角和BDE=BDC-EDC=7x-x=6x,BED=180°-EBD-EDB=180°-4y°-6x°,利用EB平分DEN,得出y°+40°=180°-4y°-6x°,解方程组,解得,可证MEUV,根据MHUV,可求SMH=90°,SMG=NES=10°即可【详解】(1)证明:ABU+ABD=180°,ABU+CDV180°ABU=180°-ABD,CDV180°-ABU,ABD=CDV,ABCD;(2)解:ABCD;ABD=RDB,ABE+EBD=FDB+FDR,BEDF,EBD=FDB,ABE=FDR,FDR35°,ABE=FDR=35°,MEBABE+5°=35°+5°=40°,(3)解:设ME交AB于S,MGEN,NES=GMS=GES,设NES=y°,EBD2NEGNEG=NES+GES=2NES=2y°,EBD =4NES=4y°,EDCCDB,设EDC=x°CDB=7x°,ABCD,ABD+CDB=180°,即GBE+EBD+CDB=180°,35+4y+7x=180,BDE=BDC-EDC=7x-x=6x,BED=180°-EBD-EDB=180°-4y°-6x°,EB平分DEN,NEB=BED,NEB=NES+SEB=y°+40°,y°+40°=180°-4y°-6x°,解得,EBD=4y°=40°=MEB,MEUV,MHUV,MHME,SMH=90°,SMG=NES=10°,GMH=90°-SMG=90°-10°=80°【点睛】本题考查平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组,掌握平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组是解题关键4、证明见解析【分析】过点D作,交AB于点M,过点D做,交AC于点N,根据角平分线性质,得;根据全等三角形的性质,通过证明,通过证明,得,结合等腰三角形的性质,即可完成证明【详解】如下图,过点D作,交AB于点M,过点D做,交AC于点N 直角和直角中 点D为BC的中点, 直角和直角中 , ,即是等腰三角形【点睛】本题考查了角平分线、三角形中线、全等三角形、等腰三角形的知识;解题的关键是熟练掌握角平分线、三角形中线,全等三角形的性质,从而完成求解5、(1),理由见解析;(2)60°;PM,见解析【分析】(1)根据等边三角形的性质,可得ABAC,BAC60°,再由由旋转可知:从而得到,可证得,即可求解 ;(2)由BPC120°,可得PBCPCB60°根据等边三角形的性质,可得BAC60°,从而得到ABCACB120°,进而得到ABPACP60°再由,可得 ,即可求解;延长PM到N,使得NMPM,连接BN可先证得PCMNBM从而得到CPBN,PCMNBM进而得到 根据可得,可证得,从而得到 再由 为等边三角形,可得 从而得到 ,即可求解【详解】解:(1) 理由如下:在等边三角形ABC中,ABAC,BAC60°,由旋转可知: 即在和ACP中 (2)BPC120°,PBCPCB60°在等边三角形ABC中,BAC60°,ABCACB120°,ABPACP60° ,ABPABP60°即 ;PM 理由如下:如图,延长PM到N,使得NMPM,连接BNM为BC的中点,BMCM在PCM和NBM中 PCMNBM(SAS)CPBN,PCMNBM BPC120°,PBCPCB60°PBCNBM60°即NBP60°ABCACB120°,ABPACP60°ABPABP60°即 在PNB和 中 (SAS) 为等边三角形, ,PM 【点睛】本题主要考查了等边三角形判定和性质,全等三角形的判定和性质,图形的旋转,熟练掌握等边三角形判定和性质定理,全等三角形的判定和性质定理,图形的旋转的性质是解题的关键6、(1)证明见解析;(2)CDE=20°【分析】(1)由“SAS”可证ABCDBE;(2)由全等三角形的性质可得C=E,由三角形的外角性质可求解(1)证明:ABD=CBE,ABD+DBC=CBE+DBC,即:ABC=DBE,在ABC和DBE中,ABCDBE(SAS);(2)解:由(1)可知:ABCDBE,C=E,DFB=C+CDE,DFB=E+CBE,CDE=CBE,ABD=CBE=20°,CDE=20°【点睛】本题考查了全等三角形的判定和性质,三角形的外角性质,证明三角形全等是解题的关键7、见解析【分析】过A作AFBC于F,根据等腰三角形的性质得出BF=CF,DF=EF,即可求出答案【详解】证明:如图,过A作AFBC于F,AB=AC,AD=AE,BF=CF,DF=EF,BF-DF=CF-EF,BD=CE【点睛】本题考查了等腰三角形的性质的应用,注意:等腰三角形的底边上的高,底边上的中线,顶角的平分线互相重合8、证明见解析.【分析】延长CE交AB于F,求出AECAEF,FAECAE,根据ASA证FAECAE,推出ACEAFC,根据三角形外角性质得出AFCBECD,代入即可【详解】证明:延长CE交AB于F,CEAD,AECAEF,AD平分BAC,FAECAE,在FAE和CAE中, ,FAECAE(ASA),ACEAFC,AFCBECD,ACEBECD【点睛】本题考查了全等三角形的性质和判定,三角形的外角性质等知识点,关键是作辅助线后求出AFCACE9、87°,40°【分析】根据三角形外角的性质可得,代入计算即可求出,再根据三角形内角和定理求解即可【详解】解:,【点睛】本题考查了三角形内角和和外角的性质,解题关键是准确识图,理清角之间的关系,准确进行计算10、(1)仍是真命题,证明见解析(2)仍能得到,作图和证明见解析【分析】(1)由角边角得出和全等,对应边相等即可(2)由(1)问可知BM=CN,故可由边角边得出和全等,对应角相等,即可得出(1)在和中有故结论仍为真命题(2)BM=CNCM=ANAB=AC,在和中有故仍能得到,如图所示【点睛】本题考查了全等三角形的判定和性质,从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边角迅速、准确地确定要补充的边角,有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路

    注意事项

    本文(2021-2022学年度强化训练沪教版七年级数学第二学期第十四章三角形综合测评试题.docx)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开