2021-2022学年最新沪科版九年级数学下册期末综合复习-A卷(含详解).docx
-
资源ID:28154713
资源大小:916.31KB
全文页数:26页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年最新沪科版九年级数学下册期末综合复习-A卷(含详解).docx
· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·沪科版九年级数学下册期末综合复习 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、图2是由图1经过某一种图形的运动得到的,这种图形的运动是( )A平移B翻折C旋转D以上三种都不对2、下列事件中,是必然事件的是( )A刚到车站,恰好有车进站B在一个仅装着白乒乓球的盒子中,摸出黄乒乓球C打开九年级上册数学教材,恰好是概率初步的内容D任意画一个三角形,其外角和是360°3、如图,将一个棱长为3的正方体表面涂上颜色,把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,有三个面被涂色的概率为( )ABCD4、若的圆心角所对的弧长是,则此弧所在圆的半径为( )A1B2C3D45、下列事件为必然事件的是()A明天要下雨Ba是实数,|a|0C34D打开电视机,正在播放新闻6、下列图形中,既是轴对称图形,又是中心对称图形的是()ABCD7、下列判断正确的个数有( )直径是圆中最大的弦;长度相等的两条弧一定是等弧;半径相等的两个圆是等圆;弧分优弧和劣弧;同一条弦所对的两条弧一定是等弧· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·A1个B2个C3个D4个8、在中,给出条件:;外接圆半径为4请在给出的3个条件中选取一个,使得BC的长唯一可以选取的是( )ABCD或9、下列语句判断正确的是()A等边三角形是轴对称图形,但不是中心对称图形B等边三角形既是轴对称图形,又是中心对称图形C等边三角形是中心对称图形,但不是轴对称图形D等边三角形既不是轴对称图形,也不是中心对称图形10、下列图形中,是中心对称图形,但不是轴对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,PA,PB是的切线,切点分别为A,B若,则AB的长为_2、如图,AB是半圆O的弦,DE是直径,过点B的切线BC与O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则BDC的度数为_3、如图,在等腰直角中,已知,将绕点逆时针旋转60°,得到,连接,若,则_4、在平面直角坐标系中,点关于原点对称的点的坐标是_5、数学兴趣活动课上,小方将等腰的底边BC与直线l重合,问:(1)如图(1)已知,点P在BC边所在的直线l上移动,小方发现AP的最小值是_;(2)如图(2)在直角中,点D是CB边上的动点,连接AD,将线段AD顺时针旋转60°,得到线段AP,连接CP,线段CP的最小值是_三、解答题(5小题,每小题10分,共计50分)1、某化妆品专卖店,为了吸引顾客,在“母亲节”当天举办了甲乙两种品牌化妆品有奖酬宾活动,凡购物满88元,均可得到一次摇奖的机会已知在摇奖机内装有2个红球和2个白球,除颜色外其他都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色决定送礼金券的多少(如表)甲种品牌化妆品· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·球两红一红一白两白礼金券(元)6126乙种品牌化妆品球两红一红一白两白礼金券(元)12612(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率;(2)如果一个顾客当天在本店购买满88元,若只考虑获得最多的礼品券,请你帮助分析选择购买哪种品牌的化妆品?并说明理由2、解题与遐想如图,RtABC的内切圆与斜边AB相切于点D,AD4,BD5求RtABC的面积王小明:这道题算出来面积刚好是20,太凑巧了吧刚好是4×520,有种白算的感觉赵丽华:我把4和5换成m、n再算一遍,ABC的面积总是mn!确实非常神奇了数学刘老师:大家想一想,既然结果如此简单到极致,不计算能不能得到呢?比如,拼图?霍佳:刘老师,我在想另一个东西,这个图能不能尺规画出来啊感觉图都定了我怎么想不出来呢?计算验证(1)通过计算求出RtABC的面积拼图演绎(2)将RtABC分割放入矩形中(左图),通过拼图能直接“看”出“20”请在图中画出拼图后的4个直角三角形甲、乙、丙、丁的位置,作必要标注并简要说明尺规作图(3)尺规作图:如图,点D在线段AB上,以AB为斜边求作一个RtABC,使它的内切圆与斜边AB相切于点D(保留作图的痕迹,写出必要的文字说明)3、如图,在6×6的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,A,B两点均在格点上请按要求在图,图,图中画图:(1)在图中,画等腰ABC,使AB为腰,点C在格点上(2)在图中,画面积为8的四边形ABCD,使其为中心对称图形,但不是轴对称图形,C,D两点均在格点上(3)在图中,画ABC,使ACB=90°,面积为5,点C在格点上4、如图,在中,将绕着点A顺时针旋转得到,连接BD,连接CE并延长交BD于点F(1)求的度数;(2)若,且,求DF的长· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·5、如图,已知线段,点A在线段上,且,点B为线段上的一个动点以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,旋转角分别为和若旋转后M、N两点重合成一点C(即构成),设(1)的周长为_;(2)若,求x的值-参考答案-一、单选题1、C【详解】解:根据图形可知,这种图形的运动是旋转而得到的,故选:C【点睛】本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键2、D【分析】根据必然事件的概念“在一定条件下,有些事件必然会发生,这样的事件称为必然事件”可判断选项D是必然事件;根据不可能事件的概念“有些事件必然不会发生,这样的事件称为不可能事件”可判断选项B是不可能事件;根据随机事件的概念“在一定条件下,可能发生也可能不发生的事件,称为随机事件”判断选项A、C是随机事件,即可得【详解】解:A、刚到车站,恰好有车进站是随机事件;B、在一个仅装着白乒乓球的盒子中,摸出黄乒乓球是不可能事件;C、打开九年级上册数学教材,恰好是概率初步的内容是随机事件;D、任意画一个三角形,其外角和是360°是必然事件;故选D【点睛】本题考查了必然事件,解题的关键是熟记必然事件的概念,不可能事件的概念和随机事件的概念3、B【分析】直接根据题意得出恰有三个面被涂色的有8个,再利用概率公式求出答案【详解】解:由题意可得:小立方体一共有27个,恰有三个面被涂色的为棱长为3的正方体顶点处的8个小正方体;故取得的小正方体恰有三个面被涂色的概率为故选:B· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·【点睛】此题主要考查了概率公式的应用,正确得出三个面被涂色小立方体的个数是解题关键4、C【分析】先设半径为r,再根据弧长公式建立方程,解出r即可【详解】设半径为r,则周长为2r,120°所对应的弧长为解得r=3故选C【点睛】本题考查弧长计算,牢记弧长公式是本题关键5、B【分析】根据事情发生的可能性大小进行判断,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件【详解】A. 明天要下雨,是随机事件,不符合题意;B. a是实数,|a|0,是必然事件,符合题意;C. 34,是不可能事件,不符合题意D. 打开电视机,正在播放新闻,是随机事件,不符合题意故选B【点睛】本题考查了必然事件,随机事件,不可能事件,实数的性质,有理数大小比较,掌握相关知识是解题的关键6、C【详解】解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;选项B不是轴对称图形,是中心对称图形,故B不符合题意;选项C既是轴对称图形,也是中心对称图形,故C符合题意;选项D是轴对称图形,不是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.7、B【详解】直径是圆中最大的弦;故正确,同圆或等圆中长度相等的两条弧一定是等弧;故不正确半径相等的两个圆是等圆;故正确弧分优弧、劣弧和半圆,故不正确同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则不正确综上所述,正确的有· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·故选B【点睛】本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键8、B【分析】画出图形,作,交BE于点D根据等腰直角三角形的性质和勾股定理可求出AD的长,再由AD和AC的长作比较即可判断;由前面所求的AD的长和AB的长,结合该三角形外接圆的半径长,即可判断该外接圆的圆心可在AB上方,也可在AB下方,其与AE的交点即为C点,为两点不唯一,可判断其不符合题意【详解】如图,点C在射线上作,交BE于点D,为等腰直角三角形,不存在的三角形ABC,故不符合题意;,AC=8,而AC>6,存在的唯一三角形ABC,如图,点C即是,使得BC的长唯一成立,故符合题意;,存在两个点C使的外接圆的半径等于4,两个外接圆圆心分别在AB的上、下两侧,如图,点和即为使的外接圆的半径等于4的点故不符合题意故选B【点睛】本题考查等腰直角三角形的判定和性质,勾股定理,三角形外接圆的性质利用数形结合的思想是解答本题的关键9、A【分析】根据等边三角形的对称性判断即可【详解】等边三角形是轴对称图形,但不是中心对称图形,B,C,D都不符合题意;故选:A【点睛】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·本题考查了等边三角形的对称性,熟练掌握等边三角形的对称性是解题的关键10、B【分析】根据“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解【详解】解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;B、是中心对称图形但不是轴对称图形,故符合题意;C、既不是轴对称图形也不是中心对称图形,故不符合题意;D、是轴对称图形但不是中心对称图形,故不符合题意;故选B【点睛】本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键二、填空题1、3【分析】由切线长定理和,可得为等边三角形,则【详解】解:连接,如下图:,分别为的切线,为等腰三角形,为等边三角形,故答案为:3【点睛】本题考查了等边三角形的判定和切线长定理,解题的关键是作出相应辅助线2、【分析】先由切线的性质得到OBC=90°,再由平行四边形的性质得到BO=BC,则BOC=BCO=45°,由OD=OB,得到ODB=OBD,由ODB+OBD=BOC,即可得到ODB=OBD=22.5°,即BDC=22.5°【详解】解:BC是圆O的切线,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·OBC=90°,四边形ABCO是平行四边形,AO=BC,又AO=BO,BO=BC,BOC=BCO=45°,OD=OB,ODB=OBD,ODB+OBD=BOC,ODB=OBD=22.5°,即BDC=22.5°,故答案为:22.5°【点睛】本题主要考查了平行四边形的性质,切线的性质,等腰三角形的性质与判定,三角形外角的性质,熟知切线的性质是解题的关键3、【分析】如图连接并延长,过点作交于点,由题意可知为等边三角形,在中;在中计算求解即可【详解】解:如图连接并延长,过点作交于点, 由题意可知,为等边三角形 在中在中故答案为:【点睛】本题考查了旋转的性质,等边三角形,勾股定理,含的直角三角形等知识解题的关键在于做辅助线构造直角三角形4、(3,4)【分析】关于原点对称的点,横坐标与纵坐标都互为相反数【详解】:由题意,得点(-3,-4)关于原点对称的点的坐标是(3,4),故答案为:(3,4)【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·5、10 5 【分析】(1)如图,作AHBC于H根据垂线段最短,求出AH即可解决问题(2)如图,在AB上取一点K,使得AKAC,连接CK,DK由PACDAK(SAS),推出PCDK,易知KDBC时,KD的值最小,求出KD的最小值即可解决问题【详解】解:如图作AHBC于H,ABAC20, , , ,根据垂线段最短可知,当AP与AH重合时,PA的值最小,最小值为10AP的最小值是10;(2)如图,在AB上取一点K,使得AKAC,连接CK,DKACB90°,B30°,CAK60°,PADCAK,PACDAK,PADA,CAKA,PACDAK(SAS),PCDK,KDBC时,KD的值最小, , 是等边三角形, ,PC的最小值为5【点睛】本题属于几何变换综合题,考查了等腰三角形的性质,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题三、解答题1、(1)摇出一红一白的概率=(2)选择甲品牌化妆品,理由见解析【分析】(1)让所求的情况数除以总情况数即为所求的概率;(2)算出相应的平均收益,比较即可· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(1)解:树状图为:一共有6种情况,摇出一红一白的情况共有4种,摇出一红一白的概率=;(2)(2)两红的概率P=,两白的概率P=,一红一白的概率P=,甲品牌化妆品获礼金券的平均收益是:×6+×12+×6=10元乙品牌化妆品获礼金券的平均收益是:×12+×6+×12=8元选择甲品牌化妆品【点睛】本题主要考查的是概率的计算,画树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比2、(1)SABC20;(2)见解析;(3)见解析【分析】(1)设O的半径为r,由切线长定理得,AEAD4,BFBD5,CECFr,由勾股定理得,(r+4)2+(r+5)292,进而求得结果;(2)根据切线长定理可证明甲和乙两个三角形全等,丙丁两个三角形全等,故将甲乙图形放在OE为边的上方,将丙丁以OP为边放在右侧,围成矩形的边长是4和5;(3)可先计算AFB135°,根据“定弦对定角”作F点的轨迹,根据切线性质,过点F作AB的垂线,再根据直径所对的圆周角是90°,确定点C【详解】解:(1)如图1,设O的半径为r,连接OE,OF,O内切于ABC,OEAC,OFBC,AEAD4,BFBD5,OECOFCC90°,四边形ECFO是矩形,CFOEr,CEOFr,AC4+r,BC5+r,在RtABC中,由勾股定理得,(r+4)2+(r+5)292,r2+9r20,SABC· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·20;(2)如图2,(3)设ABC的内切圆记作F,AF和BF平分BAC和ABC,FDAB,BAFCAB,ABF,BAF+ABF(BAC+ABC)45°,AFB135°,可以按以下步骤作图(如图3):以BA为直径作圆,作AB的垂直平分线交圆于点E,以E为圆心,AE为半径作圆,过点D作AB的垂线,交圆于F,连接EF并延长交圆于C,连接AC,BC,则ABC就是求作的三角形【点睛】本题考查三角形的内切圆性质、切线长定理、勾股定理、矩形的判定与性质、尺规作图-作垂线,熟练掌握相关知识的联系与运用是解答的关键3、(1)见解析;(2)见解析;(3)见解析【分析】(1)因为AB=5,作腰为5的等腰三角形即可(答案不唯一);(2)作边长为2,高为4的平行四边形即可;(3)根据(1)的结论,作BG边的中线,即可得解【详解】解:(1)如图中,ABC即为所求作(答案不唯一);(2)如图中,平行四边形ABCD即为所求作;· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(3)如图中,ABC即为所求作(答案不唯一);AB=AG,BC=CG,ACBG,ABG的面积为,ABC的面积为5,且ACB=90°【点睛】本题考查作图-应用与设计,等腰三角形的判定和性质,勾股定理及其逆定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题4、(1)45°;(2)【分析】(1)根据旋转的性质得,通过等量代换及三角形内角和得,根据四点共圆即可求得;(2)连接EB,先证明出,根据全等三角形的性质得,在中利用勾股定理,即可求得【详解】解:(1)由旋转可知:,由三角形内角和定理得,点A,D,F,E共圆(2)连接EB,又,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·在中,【点睛】本题考查了旋转的性质、三角形全等判定及性质、勾股定理、三角形内角和等,解题的关键是掌握旋转的性质5、(1)4(2)【分析】(1)由旋转知:AM=AC=1,BN=BC,将ABC的周长转化为MN;(2)由+=270°,得ACB=90°,利用勾股定理列方程即可(1)解:由旋转知:AM=AC=1,BN=BC=3-x,ABC的周长为:AC+AB+BC=MN=4;故答案为:4;(2)解:+=270°,CAB+CBA=360°-270°=90°,ACB=180°-(CAB+CBA)=180°-90°=90°,AC2+BC2=AB2,即12+(3-x)2=x2,解得【点睛】本题主要考查了旋转的性质,勾股定理等知识,证明ACB=90°是解题的关键