2022年人教版九年级数学下册第二十六章《反比例函》重点解析试题(含答案及详细解析).docx
-
资源ID:28155114
资源大小:608.66KB
全文页数:26页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年人教版九年级数学下册第二十六章《反比例函》重点解析试题(含答案及详细解析).docx
人教版九年级数学下册第二十六章反比例函重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、关于反比例函数,下列说法不正确的是( )A图象经过B图象位于一、三象限C图象关于直线对称D随的增大而增大2、如图,取一根长100cm的匀质木杆,用细绳绑在木杆的中点O将其吊起来在中点O的左侧距离中点25cm处挂一个重9.8N的物体,在中点O右侧用一个弹簧秤向下拉,使木杆处于水平状态如果把弹簧秤与中点O的距离L(单位:cm)记作x,弹餐秤的示数F(单位:N记作y,下表中有几对数值满足y与x的函数关系式()x/cm5103540y/N4924.57.16.125A1对B2对C3对D4对3、如图,过原点的一条直线与反比例函数的图象分别交于A,B两点,若A点的坐标为,则B点的坐标为( )ABCD4、点A(1,y1),点B(2,y2),在反比例函数的图象上,则( )Ay1 y2By1 y2Cy1 y2D不能确定5、在反比例函数图象上有两点A(,)B(,),0,则m的取值范围是( )AmBmCmDm6、以下在反比例函数图像上的点是( )A(1,2)B(2,1)C(1,2)D(2,1)7、如图,和都是等腰直角三角形,反比例函数在第一象限的图象经过点B,则与的面积之差为( )A9B12C6D38、已知反比例函数y的图象如图所示,则一次函数ycx+a和二次函数yax2bx+c在同一直角坐标系中的图象可能是()ABCD9、如图,过点O作直线与双曲线y(k0)交于A,B两点,过点B作BCx轴于点C,作BDy轴于点D在x轴、y轴上分别取点E,F,使点A,E,F在同一条直线上,且AEAF设图中矩形ODBC的面积为S1,EOF的面积为S2,则S1,S2的数量关系是()AS1S2B2S1S2C3S1S2D4S1S210、已知,在反比例函数上,则,的大小关系为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若反比例函数的图象经过点A(-2,4)和点B(8,a),则a的值为_2、如图,在反比例函数的图象上有点,它们的横坐标依次为2,4,6,8,10,分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为,则的值为_3、如图,矩形OABC的两边OA、OC分别在x轴和y轴上,以AC为边作平行四边形ACDE,E点在CB的延长线上,反比例函数过B点且与CD交于F点,则的值为_4、反比例函数的图象经过点,则k的值为_5、已知点A(1,y1),B(2,y2)在反比例函数y(k0)的图象上,则y1_y2(填“”“”或“”)三、解答题(5小题,每小题10分,共计50分)1、反比例函数y(x0,k0)和y(x0)的图象如图所示,点P(m,0)是x轴上一动点,过点P作直线ABx轴,交两图象分别于A、B两点(1)若m1,线段AB9时,求点A、B的坐标及k值;(2)雯雯同学提出一个大胆的猜想:“当k一定时,OAB的面积随m值的增大而增大”你认为她的猜想对吗?说明理由2、如图,在平面直角坐标系中,反比例函数y(x0)的图象经过点A(2,6),将点A向右平移2个单位,再向下平移a个单位得到点B,点B恰好落在反比例函数y(x0)的图象上,过A,B两点的直线yk2x+b与y轴交于点C(1)求a的值及点C的坐标(2)在y轴上有一点D(0,5),连接AD,BD,求ABD的面积(3)结合图象,直接写出k2x+b的解集3、如图,已知一次函数与反比例函数的图象在第一、三象限分别交于A,B两点,点B的横坐标为,连接(1)求k的值(2)求的面积4、通过实验研究发现:初中生在数学课上听课注意力指标随上课时间的变化而变化,上课开始时,学生兴趣微增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散学生注意力指标y随时间x(分钟)变化的函数图象如图所示,当0x10和10x20时,图象是线段;当20x45时,图象是反比例函数的一部分,其中BCADx轴(1)求点A对应的指标值;(2)张老师在一节课上讲解一道数学综合题需要18分钟,他能否确保学生在听这道综合题的讲解时,注意力指标都不低于36?请说明理由5、心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课时间的变化而变化学生的注意力指数y随时间x(分)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分)(1)上课后的第5分钟与第30分钟相比较,第 分钟时学生的注意力更集中(2)一道数学题,需要讲18分钟,为了学生听课效果较好,要求学生的注意力指数不低于40,那么经过适当的时间安排,教师能否在学生注意力达到所需状态下讲完这道题?请说明理由-参考答案-一、单选题1、D【分析】直接利用反比例函数的性质分别分析得出答案【详解】解:、反比例函数中,当时,即该函数图象经过点,说法正确,不合题意;、反比例函数的图象位于第一、三象限,说法正确,不合题意;、反比例函数的图象关于直线对称,说法正确,不合题意;、反比例函数的图象在每一象限内随的增大而减小,说法错误,符合题意故选:D【点睛】本题主要考查了反比例函数的性质,解题的关键是正确掌握相关性质2、C【分析】由题意得,yx25×9.8245,即可得出结论;【详解】解:由题意得,yx25×9.8245,y;当x=5时,y=49;当x=10时,y=24.5;当x=35时,y=7;当x=40时,y=6.125;有三对符合题意,故答案选:C【点睛】本题考查了反比例函数的应用,解答本题的关键是理解题意,得出x与y的积为定值,从而得出函数关系式3、C【分析】根据题意可知,A、B关于原点对称,则根据对称性即可得到B点坐标【详解】解:过原点的一条直线与反比例函数 的图象分别交于A,B两点,点A的坐标为(3,-5),A、B关于原点对称,B点坐标为(-3,5)故选C【点睛】本题考查了反比例函数图象的对称性,解决这类题目的关键是掌握两点的对称中心为原点4、B【分析】利用反比例函数的图象分布在一、三象限,在每个单独的象限内y随x的增大而减小,利用21得出y1y2即可【详解】解:反比例函数的图象分布在一、三象限,在每个单独的象限内y随x的增大而减小,而A(1,y1),B(2,y2)都在第一象限,在第一象限内,y随x的增大而减小,21,y1y2,故选:B【点睛】本题主要考查了反比例函数的性质,当k>0时,图象分布在一、三象限,在每个单独的象限内,y随x的增大而减小,当k<0时,图象分布在二、四象限,在每个单独的象限内,y随x的增大而增大,由x的值的变化得出y的值的变化情况;也可以把x的值分别代入到关系式中求出y1和y2的值,然后再做比较即可5、B【分析】对于反比例函数,由0,则A(,)B(,)在两个不同的象限,结合,可得A(,)在第三象限,B(,)在第一象限,从而可得13m0,解不等式可得答案.【详解】解: 反比例函数图象上有两点A(,)B(,),0, 13m0,解得: 故选B【点睛】本题考查的是反比例函数的图象与性质,数形结合是解本题的关键.6、B【分析】根据函数,可得,只要把点的坐标代入,代数式的值为2即可【详解】解:函数,故选项A不在反比例函数图像上;,故选项B在反比例函数图像上;,故选项C不在反比例函数图像上;,故选项D不在反比例函数图像上;故选B【点睛】本题考查反比例函数图象上点的坐标特征掌握验证点在反比例函数图像上,把点的坐标代入代数式xy中代数式的值为2是解题关键7、D【分析】已知反比例函数的解析式为y=,根据系数k的代数意义,设函数图象上点B的坐标为(m,)再结合已知条件求解即可;【详解】解:如图,设点C(n,0),点B在反比例函数y=的图象上,设点B(m,)OAC和BAD都是等腰直角三角形,点A的坐标为(n,n),点D的坐标为(n,),AD=BD,n=mn,化简整理得m22mn=6SOACSBAD=n2(mn)2=m2+mn=(m22mn),SOACSBAD=3故选D【点睛】本题主要考查了反比例函数与几何综合,三角形面积,等腰直角三角形的性质,解题的关键在于能够熟练掌握反比例函数图像上点的坐标特征8、D【分析】根据反比例函数图象的性质得到,再根据一次函数与二次函数的图象性质判断即可;【详解】反比例函数的图象在一、三象限,A二次函数的开口向上,对称轴在y轴右侧,a、b异号,与不相符,故A错误;B. 二次函数的开口向下,对称轴在y轴右侧,a、b异号,与已知b>0矛盾故B错误;C.二次函数的开口向上,对称轴在y轴右侧,a、b异号,二次函数图象与y轴交于负半轴,一次函数ycx+a的图象过二、三、四象限,故C错误;D. 二次函数的开口向上,对称轴在y轴右侧,a、b异号,c<0,则b>0,所以一次函数图象经过第一、二、四象限故D正确;故选D【点睛】本题主要考查了反比例函数的图象性质,一次函数的图象性质,二次函数的图象性质,准确分析判断是解题的关键9、B【分析】过点A作AMx轴于点M,根据反比例函数图象系数k的几何意义即可得出S矩形ODBC=-k、SAOM=-k,再根据中位线的性质即可得出SEOF=4SAOM=-2k,由此即可得出S1、S2的数量关系【详解】解:过点A作AMx轴于点M,如图所示AMx轴,BCx轴,BDy轴,S矩形ODBC=-k,SAOM=-kAE=AFOFx轴,AMx轴,AM=OF,ME=OM=OE,SEOF=OEOF=4SAOM=-2k,2S矩形ODBC=SEOF,即2S1=S2故选:B【点睛】本题考查了反比例函数图象系数k的几何意义以及三角形的中位线,根据反比例函数图象系数k的几何意义找出S矩形ODBC=-k、SEOF=-2k是解题的关键10、A【分析】先分清各点所在的象限,再利用各自的象限内利用反比例函数的增减性解决问题【详解】解:,k0,双曲线在二、四象限,且每个象限内,y随x的增大而增大,点,在反比例函数的图象上,点,分布在第二象限,-15-3,0y2y1,在第四象限,y30,故选:A【点睛】本题主要考查了反比例函数的性质,正确掌握反比例函数增减性是解题关键,注意:反比例函数的增减性要在各自的象限内二、填空题1、【解析】【分析】把点坐标代入解析式,然后求时函数值即可【详解】把点坐标代入解析式得:,解得:反比例函数,在反比例函数上,故答案为:【点睛】本题主要考查求反比例函数解析式,和函数值,解题的关键是熟知待定系数法确定函数关系式2、9.6【解析】【分析】由题意易知点P1的坐标为(2,6),然后根据平移可把右边三个矩形进行平移,进而可得S1+S2+S3+S4S矩形ABCP1,最后问题可求解【详解】解:当x2时,y6,点P1的坐标为(2,10),如图所示,将右边三个矩形平移,把x10代入反比例解析式得:y1.2,P1CAB61.24.8,则S1+S2+S3+S4S矩形ABCP14.8×29.6,故答案为:9.6【点睛】本题主要考查反比例函数比例系数的几何意义,熟练掌握反比例函数的几何意义是解题的关键3、28【解析】【分析】分别过点D,点F作BC的垂线,垂足分别为点N,点M,设OA=a,OC=b,则可以表达点E,点D的纵坐标,进而可表达点F的坐标,根据SABF=6可求出k的值【详解】解:如图,分别过点D,点F作BC的垂线,垂足分别为点N,点M,DNFM,CF:CD=FM:DN,设OA=a,OC=b,A(a,0),C(0,b),B(a,b),点E在CB的延长线上,点E的纵坐标为b,反比例函数(x0)过B点,k=ab,四边形ACDE是平行四边形,ACDE,点D的纵坐标为2b,DN=b,FM=,点F的纵坐标为,点F在反比例函数(x0)上,F(,),BM=,SABF=6,解得,即k=28故答案为:28【点睛】本题主要考查反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,矩形的性质,平行四边形的性质,设出关键点的坐标,并根据几何关系消去参数的值是本题解题关键4、-5【解析】【分析】把(,)代入函数解析式即可求的值【详解】解:由题意知,解得:故答案是:【点睛】本题考查的是用待定系数法求反比例函数的比例系数,解题关键是将点的坐标代入函数的解析式中5、【解析】【分析】根据反比例函数的性质可以判断y1与y2的大小关系,从而可以解答本题【详解】解:y(k0),此函数在每个象限内,y随x的增大而减小,点A(1,y1),B(2,y2)在反比例函数y(k0)的图象上,12,y1y2,故答案为:【点睛】本题考查了反比例函数的性质,根据反比例函数解析式得出其增减性是关键三、解答题1、(1)点A(-1,-k),点B(-1,-3),k=-6;(2)OAB的面积与m的大小无关,雯雯同学的猜想是错误的【分析】(1)把x=-1代入两解析式,即可求得点A、B的坐标,利用两点之间的距离公式列方程即可求得k值;(2)把x=m代入两解析式,同(1),利用三角形的面积公式求解即可判断【详解】解:(1)点P(-1,0),当x=-1时,y=,y=-3,点A(-1,-k),点B(-1,-3),AB=-k-(-3)=3-k,AB=9,3-k=9,解得:k=-6;(2)雯雯同学的猜想是错误的,理由如下:点P(m,0),当x=m时,y=,y=,点A(m,),点B(m,),AB=,OAB的面积为ABOP=,OAB的面积与m的大小无关,雯雯同学的猜想是错误的【点睛】本题考查反比例函数的性质,两点间距离公式,解题的关键是熟练运用反比例函数的性质,灵活运用所学知识解决问题2、(1);C(0,9);(2)SABD;(3)【分析】(1)由点A(2,6)求出反比例函数的解析式为y,进而求得B(4,3),由待定系数法求出直线AB的解析式为yx9,即可求出C点的坐标;(2)由(1)求出CD,根据SABDSBCDSACD可求得结论;(3)直接根据函数图像解答即可【详解】解:(1)把点A(2,6)代入y,2×612,反比例函数的解析式为y,将点A向右平移2个单位,x4,当x4时,y3,B(4,3),直线AB的解析式为yk2x+b,由题意可得,解得,yx9,当x0时,y9,C(0,9);(2)由(1)知CD954,SABDSBCDSACDCD|xB|CD|xA|×4×4×4×24;(3)A(2,6),B(4,3),根据图像可知k2x+b的解集为【点睛】本题考查了反比例函数系数k的几何意义,待定系数法求函数的解析式,三角形的面积的计算,求得直线AB的解析式是解题的关键3、(1);(2)8【分析】(1)先根据一次函数的解析式求出点的坐标,再利用待定系数法即可得;(2)设一次函数与轴的交点为点,先根据一次函数的解析式求出点的坐标,再联立一次函数和反比例函数的解析式求出点的坐标,然后根据的面积等于的面积与的面积之和即可得【详解】解:(1)对于一次函数,当时,即,将点代入得:;(2)如图,设一次函数与轴的交点为点,当时,解得,即,由(1)可知,反比例函数的解析式为,联立,解得或,则,所以,即的面积为8【点睛】本题考查了反比例函数与一次函数的综合等知识点,熟练掌握待定系数法是解题关键4、(1)A对应的指标值为20;(2)张老师能经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于36,理由见解析【分析】(1)设反比例函数的解析式为,由求出,可得坐标,从而求出A的指标值,(2)设当时,的解析式为,将、代入,利用待定系数法求解;求出解析式,得到时,由反比例函数可得时,根据,即可得到答案【详解】解:(1)设当时,反比例函数的解析式为,将代入得:,解得,反比例函数的解析式为,当时,BCADx轴,即A对应的指标值为20,点B(10,45);(2)设当时,的解析式为,将、代入得:,解得,的解析式为,当时,解得,由(1)得反比例函数的解析式为:,当时,解得,时,注意力指标都不低于36,而,张老师能经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于36【点睛】本题考查函数图象的应用,涉及一次函数、反比例函数及不等式等知识,解题的关键是求出和时的解析式5、(1)5;(2)能,理由见解析【分析】(1)根据函数解析分别求得时,时的函数值,即可得到结论;(2)分别求出注意力指数为36时的两个时间,再将两时间之差和19比较,大于19则能讲完,否则不能【详解】设线段AB的解析式为:yABkx+b,把(10,50)和(0,30)代入得,解得,直线AB的解析式为:;设双曲线CD的函数关系式为:,把(20,50)代入得,50,a1000,双曲线CD的函数关系式为:;(1)当时,时,故答案为:5;(2)当y40时,则2x+3040,解得x5;当y40时,则40,解得x252552018教师能在学生注意力达到所需要求状态下讲完这道题【点睛】本题考查了反比例函数与一次函数的应用,根据函数图象获取信息是解题的关键