2022年最新人教版九年级数学下册第二十八章-锐角三角函数章节测评试题(无超纲).docx
-
资源ID:28156587
资源大小:842.64KB
全文页数:29页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年最新人教版九年级数学下册第二十八章-锐角三角函数章节测评试题(无超纲).docx
人教版九年级数学下册第二十八章-锐角三角函数章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、请比较sin30°、cos45°、tan60°的大小关系()Asin30°cos45°tan60°Bcos45°tan60°sin30°Ctan60°sin30°cos45°Dsin30°tan60°cos45°2、如图,用一块直径为4的圆桌布平铺在对角线长为4的正方形桌面上,若四周下垂的最大长度相等,则桌布下垂的最大长度为( )ABCD3、在RtABC中,C90°,BC3,AC4,那么cosB的值等于()ABCD4、如图,在正方形中、是的中点,是上的一点,则下列结论:(1);(2);(3);(4)其中结论正确的个数有( )A1个B2个C3个D4个5、小金将一块正方形纸板按图1方式裁剪,去掉4号小正方形,拼成图2所示的矩形,若已知AB9,BC16,则3号图形周长为()A B C D6、如图,某建筑物AB在一个坡度为i1:0.75的山坡BC上,建筑物底部点B到山脚点C的距离BC20米,在距山脚点C右侧同一水平面上的点D处测得建筑物顶部点A的仰角是42°,在另一坡度为i1:2.4的山坡DE上的点E处测得建筑物顶部点A的仰角是24°,点E到山脚点D的距离DE26米,若建筑物AB和山坡BC、DE的剖面在同一平面内,则建筑物AB的高度约为()(参考数据:sin24°0.41,cos24°0.91,tan24°0.45,sin42°0.67cos42°0.74,tan42°0.90)A36.7米 B26.3 米 C15.4米 D25.6 米7、的值为( )A1B2CD8、如图,在小正方形网格中,的三个顶点均在格点上,则的值为( )ABCD9、下列叙述正确的有()圆内接四边形对角相等;圆的切线垂直于圆的半径;正多边形中心角的度数等于这个正多边形一个外角的度数;过圆外一点所画的圆的两条切线长相等;边长为6的正三角形,其边心距为2A1个B2个C3个D4个10、如图,为测量一幢大楼的高度,在地面上与楼底点相距30米的点处,测得楼顶点的仰角,则这幢大楼的高度为( )A米B米C米D米第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某人沿着坡度为 12.4 的斜坡向上前进了 130m,那么他的高度上升了_m2、正八边形的半径为6,则正八边形的面积为_3、计算的结果为_4、在矩形ABCD中,BC3AB,点P在直线BC上,且PCAB,则APB的正切值为 _5、_三、解答题(5小题,每小题10分,共计50分)1、(1)解方程: (2)解方程:(用公式法)(3)计算: (4)计算:2、如图1,在中,(1)求的长;(2)如图2,点P沿线段从B点向C点以每秒的速度运动,同时点Q沿线段向A点以每秒的速度运动,且当P点停止运动时,另一点Q也随之停止运动,若P点运动时间为t秒若时,求证:;并求此时t的值点P沿线段从B点向C点运动过程中,是否存在t的值,使的面积最大;若存在,请求出t的值;若不存在,请说明理由3、如图,上午9时,一条船从A处出发,以每小时40海里的速度向正东方向航行,9时30分到达B处,从A、B两处分别测得小岛C在北偏东和北偏东方向上,已知小岛C周围方圆30海里的海域内有暗礁该船若继续向东方向航行,有触礁的危险吗?并说明理由4、已知:为的直径,四边形为的内接四边形,分别连接、,交于点,且(1)如图1,求证:;(2)如图2,延长交的延长线于点,交于点,连接,求证:;(3)如图3,在(2)的条件下,交于点,若,求的长5、某镇为创建特色小镇,助力乡村振兴,决定在辖区的一条河上修建一座步行观光桥如图,河旁有一座小山,山高,点、与河岸、在同一水平线上,从山顶处测得河岸和对岸的俯角分别为,若在此处建桥,求河宽的长(结果精确到)参考数据:,-参考答案-一、单选题1、A【分析】利用特殊角的三角函数值得到sin30°,cos45°,tan60°,从而可以比较三个三角函数大小【详解】解答:解:sin30°,cos45°,tan60°,而,sin30°cos45°tan60°故选:A【点睛】本题主要考查了特殊角的三角函数值的应用,实数比大小,准确计算是解题的关键2、B【分析】作出图象,把实际问题转化成数学问题,求出弦心距,再用半径减弦心距即可【详解】如图,正方形是圆内接正方形,点是圆心,也是正方形的对角线的交点,作,垂足为, 直径,又是等腰直角三角形,由垂径定理知点是的中点,是等腰直角三角形,故选:B【点睛】此题考查了垂径定理的应用,等腰直角三角形的判定和性质,正方形的性质,特殊角的三角函数值,解题的关键是根据题意作出图像,把实际问题转化成数学问题3、D【分析】根据题意画出图形,求出AB的值,进而利用锐角三角函数关系求出即可【详解】解:如图,在RtABC中,C90°,BC3,AC4,cosB故选:D【点睛】本题考查了三角函数的定义,熟知余弦函数的定义是解题关键4、B【分析】首先根据正方形的性质与同角的余角相等证得:BAECEF,则可证得正确,错误,利用有两边对应成比例且夹角相等三角形相似即可证得ABEAEF,即可求得答案【详解】解:四边形ABCD是正方形,BC90°,ABBCCD,AEEF,AEFB90°,BAEAEB90°,AEBFEC90°,BAECEF,BAECEF,BECE,BE2ABCFAB2CE,CFCECD,CD=4CF,故正确,错误,tanBAEBE:AB,BAE30°,故错误;设CFa,则BECE2a,ABCDAD4a,DF3a,AE2a,EFa,AF5a,ABEAEF90°,ABEAEF,故正确故选:B【点睛】此题考查了相似三角形的判定与性质,直角三角形的性质以及正方形的性质熟练掌握相似三角形的判定与性质是解题的关键5、B【分析】设 而AB9,BC16,如图,由(图1)是正方形,(图2)是矩形,4号图形为小正方形,得到 再证明再建立方程求解,延长交于 则 再利用勾股定理求解 从而可得答案.【详解】解:如图,由题意得:(图1)是正方形,(图2)是矩形,4号图形为小正方形, 设 而AB9,BC16, 结合(图1),(图2)的关联信息可得: 整理得: 解得: 经检验:不符合题意,取 延长交于 则 四边形是矩形, 所以3号图形的周长为: 故选B【点睛】本题考查的是矩形的判定与性质,正方形的性质,锐角三角函数的应用,一元二次方程的应用,从(图形1)与(图形2)中的关联信息中得出图形中边的相等是解本题的关键.6、D【分析】如图所示,过E点做CD平行线交AB线段为点H,标AB线段和CD线段相交点为G和H由坡度为i1:0.75,BC20可得BG=16,GC=12,由坡度为 i1:2.4,DE26可得DF=24,EF=10,分别在在中满足,在中满足化简联立得AB=25.6【详解】如图所示,过E点做CD平行线交AB线段为点H,标AB线段和CD线段相交点为G和H在中BC20,坡度为i1:0.75,在中DE26,坡度为 i1:2.4,在中满足,在中满足,即,其中BG=16、BG=12、BH=BG-EF=6、DF=24,代入化简得,令2-有,AB=25.6故选:D【点睛】本题考查了解直角三角形的应用,利用三角形的坡度和斜边长通过勾股定理可以求得三角形各边长度,再根据角度列含两个未知数的二元一次方程组,正确的列方程求解是解题的关键7、A【分析】直接求解即可【详解】解:=1,故选:A【点睛】本题考查特殊角的三角函数值,熟记特殊角的三角函数值是解答的关键8、A【分析】观察题目易知ABC为直角三角形,其中AC3,BC4,求出斜边AB,根据余弦的定义即可求出【详解】解:由题知ABC为直角三角形,其中AC3,BC4,AB=5,故选:A【点睛】本题考查解直角三角形知识,熟练掌握锐角三角函数的定义并能在解直角三角形中的灵活应用是解题的关键9、B【分析】利用圆内接四边形的性质可判断;根据圆的切线性质可判断;根据正多边形性质可判断;根据正三角形边长为6,连接OB、OC;先求出中心角BOC,根据等腰三角形性质,求出BOD×120°60°,利用锐角三角函数可求OD×6×即可【详解】解:圆内接四边形对角互补但不一定相等,故不符合题意;圆的切线垂直于过切点的半径,故不符合题意;正n多边形中心角的度数等于,这个正多边形的外角和为360°,一个外角的度数等于正确,故符合题意;过圆外一点所画的圆的两条切线长相等,正确,故符合题意;如图,ABC为正三角形,点O为其中心;ODBC于点D;连接OB、OC;OBOC,BOC×360°120°,BDBC3,BOD×120°60°,tanBOD,OD×6×,即边长为6的正三角形的边心距为,故不符合题意,故选:B【点睛】本题考查圆内接四边形性质,圆的切线性质,切线长性质,正多边形的中心角与外角,锐角三角函数,边心距,掌握圆内接四边形性质,圆的切线性质,切线长性质,正多边形的中心角与外角,锐角三角函数,边心距是解题关键10、C【分析】利用在RtABO中,tanBAO即可解决【详解】:解:如图,在RtABO中,AOB90°,A65°,AO30m,tan65°,BO30tan65°米故选:C【点睛】本题考查解直角三角形的应用,解题的关键是熟知正切函数为对边比邻边二、填空题1、50【解析】【分析】设高度上升了h,则水平前进了2.4h,然后根据勾股定理解答即可【详解】设高度上升了h,则水平前进了2.4h,由勾股定理得: ,解得:故答案为:50【点睛】本题主要考查了坡度比与勾股定理得应用,根据坡度比和勾股定理列出关于h的方程成为解答本题的关键2、【解析】【分析】正八边形的面积有八个全等的等腰三角形面积组成,计算一个等腰三角形的面积,乘以8即可【详解】解:过A作AMOB于M,如图所示,ABO为等腰三角形,OA=OB=6,AOB=,AM是OB上的高,AOM=OAM=45°,OM=AM,sin45°=,AM=,正八边形的面积为:故答案为【点睛】本题考查了正多边形的面积,等腰直角三角形,等腰三角形,锐角三角函数,熟练把多边形的面积转化为三角形面积的倍数计算是解题的关键3、【解析】【分析】根据特殊角三角函数值的混合计算法则进行求解即可【详解】解:,故答案为:【点睛】本题主要考查了特殊角三角函数值的混合运算,熟知相关计算法则是解题的关键4、或14#14或【解析】【分析】由题意可知当P在AB上时,P是AB的中点,即AB=BP;当P在AB延长线上时,BP=3AB,在直角三角形中由正切公式求出即可【详解】解:(1)如图1所示,BC=3AB,PC=AB,BP=2PC,又四边形ABCD是矩形,tanAPB=ABBP=12;(2)如图2所示,BC=3ABPC=AB,BP=4AB,tanAPB=ABBP=14综上所述APB的正切值为或14故答案为:或14【点睛】本题主要考查矩形性质和三角函数的定义,注意分类讨论思想的运用,解题的关键是分两种情况求出AB与BP的关系5、5【解析】【分析】原式分别根据绝对值,有理数的乘方,二次根式以及特殊角三角函数值化简各项后,再进行加减运算即可得到答案【详解】解:=5【点睛】本题主要考查了实数的混合运算,熟练掌握运算法则及特殊角三角函数值是解答本题的关键三、解答题1、(1)x11,x23;(2)x1,x2;(3);(4)【解析】【分析】(1)用因式分解法解方程即可;(2)用公式法解方程即可;(3)求出特殊角三角函数值,再计算即可;(4)先计算负指数、特殊角三角函数值、0指数和绝对值,再计算即可【详解】解:(1)解方程:, ,x11,x23;(2)解方程:(用公式法),方程有两个不相等的实数根,x1,x2;(3)计算: = ,=;(4)计算:,=,=【点睛】本题考查了解一元二次方程和实数的运算,解题关键是熟记特殊角三角函数值,熟练运用不同方法解一元二次方程2、(1)AB=13;(2)证明见解析,t=354;存在,t=6【解析】【分析】(1)过A点作BC的垂线,垂足为D,则可求得AD=5,再由勾股定理可得AB长度(2)由APC=APQ+QPC=BAP+ABC,可得QPC=BAP,则可证得,可求得BP以及QC的长度,根据题意列一元一次方程即可过A点作BC的垂线,垂足为D,过Q点作BC垂线,垂足为H,根据题意列方程即可【详解】(1)过A点作BC的垂线,垂足为D在RtABD中,ADBD=tanABC=512,BC=24BD=12BC=12AD=12×512=5由勾股定理有AB=BD2+AD2AB=122+52=144+25=169=13(2)APC=APQ+QPC=BAP+ABCQPC=BAP又ABC=ACBABBP=PCQC设运动了t秒,则BP=2t,PC=24-2t,AQ=13-t,QC=t则132t=24-2tt解得t=354过A点作BC的垂线,垂足为D,过Q点作BC垂线,垂足为H,设运动了t秒,则BP=2t,PC=24-2t,AQ=13-t,QC=t,ABC=ACBcosABC=cosACB在RtABD中AB=13,AD=5cosABC=cosACB=513QH=513t当2t=24时运动停止,即0t12sSPQC=12PCQHSPQC=12PC513QCSPQC=12(24-2t)513tSPQC=-513t2+6013t对称轴为t=-b2a=-60132×513=6SPQC=-513t2+6013t开口朝下,6<12,当t=6时面积最大【点睛】本题考查了解直角三角形、勾股定理、一元一次方程的几何动点问题,根据题意列一元一次方程是解题的关键3、有触礁的危险,见解析【解析】【分析】从点C向直线AB作垂线,垂足为E,设CE的长为x海里,根据锐角三角函数的概念求出x的值,比较即可【详解】解:有触礁的危险理由:从点C向直线AB作垂线,垂足为E, 根据题意可得:AB=20海里,CAE=30°,CBE=45°,设CE的长为x海里,在RtCBE中:CBE=45°,BE=CE=x海里,AE=AB+BE=(20+x)海里,在RtCAE中:CAE=30°,tan30°=,解得:x=10+10,10+1030,该船若继续向正东方向航行,有触礁的危险【点睛】本题考查的是解直角三角形的应用方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键4、(1)见解析;(2)见解析;(3)【解析】【分析】(1)根据在同圆中弦相等所对的圆周角相等证明DE/AC,再证明,即可证得结论;(2)根据三角形外角的性质可证得结论;(3)连接AB,由圆周角定理得,设,得,再证明,证明得,通过解直角三角形求出a的值和,再证明,根据相似三角形的性质可得出,根据可得结论【详解】解:(1)证明:DE/为的直径,即(2)证明:是DEG的外角, (3)连接AB,如图,BD是的直径在中,设,则,由勾股定理得: 和所对的弧都是 在和中 在中, 在中, 由勾股定理得, ,在中, BHM=BED=90°,HBM=EBD ,即解得,【点睛】本题考查了与圆有关的综合题,相似三角形的判定和性质以及解直角三角形等知识,解题的关键是学会添加常用辅助线,利用相似三角形解决问题,学会利用参数解决问题5、河宽的长约为【解析】【分析】根据等腰三角形的判定可得,在中,由三角函数的定义求出的长,根据线段的和差即可求出的长度【详解】解:在中,.在中,.答:河宽的长约为【点睛】此题主要考查了解直角三角形的应用-仰角俯角问题,正确记忆锐角三角函数关系是解题关键