欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年人教版八年级数学下册第十八章-平行四边形必考点解析试题(含答案及详细解析).docx

    • 资源ID:28157294       资源大小:657.09KB        全文页数:35页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年人教版八年级数学下册第十八章-平行四边形必考点解析试题(含答案及详细解析).docx

    人教版八年级数学下册第十八章-平行四边形必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在菱形ABCD中,两条对角线AC=10,BD=24,则此菱形的边长为( )A14B25C26D132、如图,在四边形中,面积为21,的垂直平分线分别交于点,若点和点分别是线段和边上的动点,则的最小值为( )A5B6C7D83、如图,已知平行四边形ABCD的面积为8,E、F分别是BC、CD的中点,则AEF的面积为()A2B3C4D54、在RtABC中,C90°,若D为斜边AB上的中点,AB的长为10,则DC的长为( )A5B4C3D25、如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于点E若AB4,BC8,则图中阴影部分的面积为()A8B10C12.5D7.56、下列说法中,不正确的是( )A四个角都相等的四边形是矩形B对角线互相平分且平分每一组对角的四边形是菱形C正方形的对角线所在的直线是它的对称轴D一组对边相等,另一组对边平行的四边形是平行四边形7、在中,AC与BD相交于点O,要使四边形ABCD是菱形,还需添加一个条件,这个条件可以是( )AAO=COBAO=BOCAOBODABBC8、已知直线,点P在直线l上,点,点,若是直角三角形,则点P的个数有( )A1个B2个C3个D4个9、如图所示,公路AC、BC互相垂直,点M为公路AB的中点,为测量湖泊两侧C、M两点间的距离,若测得AB的长为6km,则M、C两点间的距离为()A2.5kmB4.5kmC5kmD3km10、如图,矩形ABCD的对角线AC和BD相交于点O,若AOD120°,AC16,则AB的长为()A16B12C8D4第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在矩形ABCD中,AD3AB,点G,H分别在AD,BC上,连BG,DH,且,当_时,四边形BHDG为菱形2、如图,圆柱形容器高为0.8m,底面周长为4.8m,在容器内壁离底部0.1m的点处有一只蚊子,此时一只壁虎正好在容器的顶部点处,若容器壁厚忽略不计,则壁虎捕捉蚊子的最短路程是_m3、如图,已知RtACB,ACB90°,ABC60°,AB8,点D在CB所在直线上运动,以AD为边作等边三角形ADE,则CB_在点D运动过程中,CE的最小值为 _4、在直角墙角FOE中有张硬纸片正方形ABCD靠墙边滑动,如图所示,AD=2,A点沿墙往下滑动到O点的过程中,正方形的中心点M到O的最小值是_5、平面直角坐标系中,四边形ABCD的顶点坐标分别是A(3,0),B(0,2),C(3,0),D(0,2),则四边形ABCD是_三、解答题(5小题,每小题10分,共计50分)1、如图,已知正方形中,点是边延长线上一点,连接,过点作,垂足为点,与交于点(1)求证:;(2)若,求 BG的长2、如图,在平行四边形中,点在上由点向点出发,速度为每秒;点在边上,同时由点向点运动,速度为每秒当点运动到点时,点,同时停止运动连接,设运动时间为秒(1)当为何值时,四边形为平行四边形?(2)设四边形的面积为,求与之间的函数关系式(3)当为何值时,四边形的面积是四边形的面积的四分之三?求出此时的度数(4)连接,是否存在某一时刻,使为等腰三角形?若存在,请求出此刻的值;若不存在,请说明理由3、如图,在等腰三角形ABC中,ABBC,将等腰三角形ABC绕顶点B按逆时针方向旋转角a到的位置,AB与相交于点D,AC与分别交于点E,F(1)求证:BCF;(2)当Ca时,判定四边形的形状并说明理由4、在长方形纸片ABCD中,点E是边CD上的一点,将AED沿AE所在的直线折叠,使点D落在点F处(1)如图1,若点F落在对角线AC上,且BAC54°,则DAE的度数为_°(2)如图2,若点F落在边BC上,且ABCD=6,ADBC=10,求CE的长(3)如图3,若点E是CD的中点,AF的延长线交BC于点G,且ABCD=6,ADBC=10,求CG的长5、如图:已知BCD是等腰直角三角形,且DCB90°,过点D作ADBC,使ADBC,在AD上取一点E,连结CE,点B关于CE的对称点为B1,连结B1D,并延长B1D交BA的延长线于点F,延长CE交B1F于点G,连结BG(1)求证:CBGCDB1;(2)若AEDE,BC10,求BG长;(3)在(2)的条件下,H为直线BG上一点,使HCG为等腰三角形,则所有满足要求的BH的长是 (直接写出答案)-参考答案-一、单选题1、D【解析】【分析】由菱形的性质和勾股定理即可求得AB的长【详解】解:四边形ABCD是菱形,AC=10,BD=24, AB=BC=CD=AD,ACBD,OB=OD=BD=12,OA=OC=AC=5,在RtABO中,AB=13,故选:D【点睛】本题考查了菱形的性质、勾股定理等知识,熟练掌握菱形的性质,由勾股定理求出AB=13是解题的关键2、C【解析】【分析】连接AQ,过点D作,根据垂直平分线的性质得到,再根据计算即可;【详解】连接AQ,过点D作,面积为21,MN垂直平分AB,当AQ的值最小时,的值最小,根据垂线段最短可知,当时,AQ的值最小,的值最小值为7;故选C【点睛】本题主要考查了四边形综合,垂直平分线的性质,准确分析计算是解题的关键3、B【解析】【分析】连接AC,由平行四边形的性质可得,再由E、F分别是BC,CD的中点,即可得到,由此求解即可【详解】解:如图所示,连接AC,四边形ABCD是平行四边形,ADBC,AD=BC,AB=CD,ABCD,E、F分别是BC,CD的中点,故选B【点睛】本题主要考查了平行四边形的性质,与三角形中线有关的面积问题,解题的关键在于能够熟练掌握平行四边形的性质4、A【解析】【分析】利用直角三角形斜边的中线的性质可得答案【详解】解:C=90°,若D为斜边AB上的中点,CD=AB,AB的长为10,DC=5,故选:A【点睛】此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半5、B【解析】【分析】利用折叠的性质可得ACFACB,由ADBC,可得出CADACB,进而可得出AECE,根据矩形性质可得AB=CD=4,BC=AD=8,D=90°,设AECE=x,则ED8x,在RtCDE中,利用勾股定理可求出x的值,再利用三角形的面积公式即可求出ACE的面积,则可得出答案【详解】解:由折叠的性质,ACFACBADBC,CADACB,CADACF,AECE四边形ABCD为矩形,AB=CD=4,BC=AD=8,D=90°,设AECE=x,则ED8x,在RtCDE中,根据勾股定理得,即42+(8x)2x2,x5,图中阴影部分的面积SACE AEAB= ×5×410故选:B【点睛】本题考查了翻折变换、矩形的性质、勾股定理以及三角形的面积,利用勾股定理求出AE的长是解题的关键6、D【解析】【分析】根据矩形的判定,正方形的性质,菱形和平行四边形的判定对各选项分析判断后利用排除法求解【详解】解:A、四个角都相等的四边形是矩形,说法正确;B、正方形的对角线所在的直线是它的对称轴,说法正确;C、对角线互相平分且平分每一组对角的四边形是菱形,说法正确;D、一组对边相等且平行的四边形是平行四边形,原说法错误;故选:D【点睛】本题主要考查特殊平行四边形的判定与性质,熟练掌握特殊平行四边形相关的判定与性质是解答本题的关键7、C【解析】【分析】根据菱形的判定分析即可;【详解】四边形ABCD时平行四边形,AOBO,是菱形;故选C【点睛】本题主要考查了菱形的判定,准确分析判断是解题的关键8、C【解析】【分析】分别讨论,三种情况,求出点坐标即可得出答案【详解】如图,当时,点与点横坐标相同,代入中得:,当时,点与点横坐标相同,代入中得:,当时,取中点为点,过点作交于点,设,在中,解得:,点有3个故选:C【点睛】本题考查直角三角形的性质与平面直角坐标系,掌握分类讨论的思想是解题的关键9、D【解析】【详解】根据直角三角形斜边上的中线性质得出CMAB,即可求出CM【解答】解:公路AC,BC互相垂直,ACB90°,M为AB的中点,CMAB,AB6km,CM3km,即M,C两点间的距离为3km,故选:D【点睛】本题考查了直角三角形的性质,解题关键是掌握直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半10、C【解析】【分析】由题意可得AOBOCODO8,可证ABO是等边三角形,可得AB8【详解】解:四边形ABCD是矩形,AC2AO2CO,BD2BO2DO,ACBD16,OAOB8,AOD120°,AOB60°,AOB是等边三角形,ABAOBO8,故选:C【点睛】本题考查了矩形的性质,等边三角形的性质和判定,熟练掌握矩形的性质是本题的关键二、填空题1、【解析】【分析】设 则再利用矩形的性质建立方程求解 从而可得答案.【详解】解: 四边形BHDG为菱形, 设 AD3AB,设 则 矩形ABCD, 解得: 故答案为:【点睛】本题考查的是勾股定理的应用,矩形的性质,菱形的性质,利用图形的性质建立方程确定之间的关系是解本题的关键.2、2.5【解析】【分析】如图所示,将容器侧面展开,连接AB,则AB的长即为最短距离,然后分别求出AC,BC的长度,利用勾股定理求解即可【详解】解:如图所示,将容器侧面展开,连接AB,则AB的长即为最短距离,圆柱形容器高为0.8m,底面周长为4.8m在容器内壁离底部0.1m的点B处有一只蚊子,此时一只壁虎正好在容器的顶部点A处,过点B作BCAD于C,BCD =90°,四边形ADEF是矩形,ADE=DEF=90°四边形BCDE是矩形,答:则壁虎捕捉蚊子的最短路程是2.5m故答案为:2.5【点睛】本题主要考查了平面展开最短路径,解题的关键在于能够根据题意确定展开图中AB的长即为所求3、 4 【解析】【分析】以AC为边作正AFC,并作FHAC,垂足为点H,连接FD、CE,由直角三角形可求BC4,由“SAS”可证FADCAE,得CEFD,CE最小即是FD最小,此时,故CE的最小值是【详解】解:以AC为边作正AFC,并作FHAC,垂足为点H,连接FD、CE,如图:在RtACB中,ACB90°,ABC60°,BAC30°,AFC,ADE都是等边三角形,ADAE,AFAC,DAEFAC60°, FAD+DAC=CAE+DAC,即FADCAE,在FAD和CAE中,FADCAE(SAS),CEFD,CE最小即是FD最小,当FDBD时,FD最小,此时FDCDCHCHF90°,四边形FDCH是矩形,CE的最小值是故答案为:4,【点睛】本题主要考查了等边三角形的性质,全等三角形的性质与判定,矩形的性质与判定,含30度角的直角三角形的性质,勾股定理等等,解题的关键在于能够熟练掌握等边三角形的性质4、2【解析】【分析】取的中点为,连接,根据直角三角形的性质求出OG和MG的长,然后根据两点之间线段最短即可求解【详解】解:取的中点为,连接,为正方形,为中点,又为直角三角形,的轨迹是以为圆心的圆弧,最小值为当三点共线时,即,故答案为:2【点睛】本题考查了正方形的性质,直角三角形斜边的中线等于斜边的一半,以及两点之间线段最短等知识,正确作出辅助线是解答本题的关键5、菱形【解析】【分析】先在坐标系中画出四边形ABCD,由A、B、C、D的坐标即可得到OA=OC=3,OB=OD=2,再由ACBD,即可得到答案【详解】解:图象如图所示:A(-3,0)、B(0,2)、C(3,0)、D(0,-2),OA=OC=3,OB=OD=2,四边形ABCD为平行四边形,ACBD,四边形ABCD为菱形,故答案为:菱形【点睛】本题主要考查了菱形的判定,坐标与图形,解题的关键在于能够熟练掌握菱形的判定条件三、解答题1、(1)见解析;(2)【分析】(1)由正方形的性质可得,由的余角相等可得CBG=CDE,进而证明BCGDCE,从而证明CG=CE;(2)证明正方形的性质可得,结合已知条件即可求得,进而勾股定理即可求得的长【详解】(1)BFDEBFE=90°四边形ABCD是正方形DCE=90°,CBG+E=CDE+E,CBG=CDEBCGDCECG=CE(2),且,CG=CE ,在中,【点睛】本题考查了正方形的性质,全等三角形的性质与判定,勾股定理,掌握三角形全等的性质与判定与勾股定理是解题的关键2、(1);(2)yS四边形ABPQ2t32(0t8);(3)t8,;(4)当t4或 或时,为等腰三角形,理由见解析【分析】(1)利用平行四边形的对边相等AQBP建立方程求解即可;(2)先构造直角三角形,求出AE,再用梯形的面积公式即可得出结论;(3)利用面积关系求出t,即可求出DQ,进而判断出DQPQ,即可得出结论;(4)分三种情况,利用等腰三角形的性质,两腰相等建立方程求解即可得出结论【详解】解:(1)在平行四边形中,由运动知,AQ16t,BP2t,四边形ABPQ为平行四边形,AQBP,16t2tt,即:ts时,四边形ABPQ是平行四边形;(2)过点A作AEBC于E,如图,在RtABE中,B30°,AB8,AE4,由运动知,BP2t,DQt,四边形ABCD是平行四边形,ADBC16,AQ16t,yS四边形ABPQ(BPAQ)AE(2t16t)×42t32(0t8);(3)由(2)知,AE4,BC16,S四边形ABCD16×464,由(2)知,yS四边形ABPQ2t32(0t8),四边形ABPQ的面积是四边形ABCD的面积的四分之三2t32×64,t8;如图,当t8时,点P和点C重合,DQ8,CDAB8,DPDQ,DQCDPQ,DB30°,DQP75°;(4)当ABBP时,BP8,即2t8,t4;当APBP时,如图,B30°,过P作PM垂直于AB,垂足为点M,BM4,解得:BP,2t,t当ABAP时,同(2)的方法得,BP,2t,t所以,当t4或 或时,ABP为等腰三角形【点睛】此题是四边形综合题,主要考查了平行四边形的性质,含30°的直角三角形的性质,等腰三角形的性质,解(1)的关键是利用AQBP建立方程,解(2)的关键是求出梯形的高,解(3)的关键是求出t,解(4)的关键是分类讨论的思想思考问题3、(1)见解析;(2)菱形,见解析【分析】(1)根据等腰三角形的性质得到AB=BC,A=C,由旋转的性质得到A1B=AB=BC,A=A1=C,A1BD=CBC1,根据全等三角形的判定定理得到BCFBA1D;(2)由(1)可知=A=C=a,B=B=AB=BC通过证明FBC=可得 BC,利用EC=C=180°推出EC+=180° 得到BCE从而证明四边形为平行四边形再利用B=BC可证明四边形为菱形【详解】(1)证明:等腰三角形ABC旋转角a得到BD=FBC=a=A=C B=B=AB=BCBCF(ASA) (2)解:四边形为菱形理由:C=a由(1)可知=A=C=a B=B=AB=BC又 BD=FBC=a FBC=BC EC=C=180°EC+=180° BCE四边形为平行四边形又B=BC 四边形为菱形【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰三角形的性质,正确的理解题意是解题的关键4、(1)18;(2)CE的长为;(3)CG的长为【分析】(1)根据矩形的性质得DAC=36°,根据折叠的性质得DAE=18°;(2)根据 矩形性质得BC90°,BCAD10,CDAB6,根据折叠的性质得AFAD10,EFED,根据勾股定理得BF=8,则CF=2,设CEx,则EFED6x,根据勾股定理得,解得:,即CE的长为;(3)连接EG,由题意得DECE,由折叠的性质得:AFAD10,AFED90°,FEDE,则EFGC=90°,由HL得RtCEGRtFEG,则CGFG,设CGFGy,则AG10+y,BG10y,在RtABG中,由勾股定理得,解得,即CG的长为【详解】解:(1)四边形ABCD是矩形,DAB=90°,DAC=90°-BAC=90°-54°=36°,AED沿AE所在的直线折叠,使点D落在点F处,DAE=EAC=DAC=×36°=18°,故答案为:18;(2)四边形ABCD是长方形, BC90°,BCAD10,CDAB6,由折叠的性质得:AFAD10,EFED,CFBCBF1082,设CEx,则EFED6x,在RtCEF中,由勾股定理得:,解得:,即CE的长为;(3)解:如图所示,连接EG,点E是CD的中点, DECE,由折叠的性质得:AFAD10,AFED90°,FEDE,EFGC=90°,在RtCEG和RtFEG中,RtCEGRtFEG(HL),CGFG,设CGFGy,则AGAF+FG10+y,BGBCCG10y,在RtABG中,由勾股定理得:,解得:,即CG的长为【点睛】本题考查了矩形的性质,折叠的性质,全等三角形的判定与性质,勾股定理,解题的关键是掌握并灵活运用这些知识点5、(1)证明过程见解析;(2)BG的长为4;(3)2或64或或6+4【分析】(1)连结BB1交CG于点M,交CD于点Q,证明四边形ABCD是正方形,再根据对称的性质得到CE垂直平分BB1,得到BCGB1CG(SSS),即可得解;(2)设BG交AD于点N,得到BCQCDE(ASA),得到CQDE5,BQCE5,再根据勾股定理得到BM,最后利用勾股定理计算即可;(3)根据点G的位置不同分4种情况进行讨论计算即可;【详解】(1)证明:如图1,连结BB1交CG于点M,交CD于点Q,ADBC,ADBC,四边形ABCD是平行四边形,BCDC,BCD90°,四边形ABCD是正方形,点B1与点B关于CE对称,CE垂直平分BB1,BCB1C,BGB1G,CGCG,BCGB1CG(SSS),CBGCB1G,DCB1C,CDB1CB1G,CBGCDB1(2)解:如图1,设BG交AD于点N,BCCDAD10,DEAD5,CDE90°,CE,BCQCDEBMC90°,CBQ90°BCMDCE,BCQCDE(ASA),CQDE5,BQCE5,CMBQ,SBCQBQCMBCCQ,CM2,BM,ABCBAN90°,GDN+CDB190°,ABN+CBG90°,GDNABN,GNDANB,GDN+GNDABN+ANB90°,BGB190°,BGMB1GMBGB145°,BMG90°,BMGBGM45°,GMBM4,BG,BG的长为4(3)解:如图1,由(2)得CM2,GM4,CG2+46,如图2,CHCG6,则CHGCGH45°,GCH90°,GH,BHGHBG642;如图3,HGCG6,且点H与点B在直线FB1的同侧,BHHGBG64;如图4,CHGH,则HCGHGC45°,CHG90°,CH2+GH2CG2,2GH2(6)2,GH3,BHBGGH43;如图5,HGCG6,且点H与点B在直线FB1的异侧,BHHG+BG6+4,综上所述,BH的长为2或64或或6+4,故答案为:2或64或或6+4【点睛】本题主要考查了全等三角形的综合,勾股定理,垂直平分线的判定与性质,正方形的性质,准确分析计算是解题的关键

    注意事项

    本文(2022年人教版八年级数学下册第十八章-平行四边形必考点解析试题(含答案及详细解析).docx)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开