2022年强化训练沪教版七年级数学第二学期第十四章三角形同步测试试题(无超纲).docx
-
资源ID:28158103
资源大小:548.31KB
全文页数:31页
- 资源格式: DOCX
下载积分:9金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年强化训练沪教版七年级数学第二学期第十四章三角形同步测试试题(无超纲).docx
沪教版七年级数学第二学期第十四章三角形同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、等腰三角形的一个顶角是80°,则它的底角是( )A40°B50°C60°D70°2、如果三角形一边上的中线等于这条边的一半,那么这个三角形一定是( )A锐角三角形B直角三角形C钝角三角形D等腰三角形3、若三条线段中a3,b5,c为奇数,那么以a、b、c为边组成的三角形共有( )A1个B2个C3个D4个4、三角形的外角和是()A60°B90°C180°D360°5、如图,A,DBC3DBA,DCB3DCA,则BDC的大小为( )ABCD6、已知长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将BEF对折,点B落在直线EF上的点B处,得折痕EM,将AEF对折,点A落在直线EF上的点A处,得折痕EN,则图中与BME互余的角有()A2个B3个C4个D5个7、如图,BD是的角平分线,交AB于点E若,则的度数是( )A10°B20°C30°D50°8、下列各组线段中,能构成三角形的是( )A2、4、7B4、5、9C5、8、10D1、3、69、如图,在中,AD、AE分别是边BC上的中线与高,CD的长为5,则的面积为( )A8B10C20D4010、等腰三角形的一个角是80°,则它的一个底角的度数是( )A50°B80°C50°或80°D100°或80°第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,上午9时,一艘船从小岛A出发,以12海里的速度向正北方向航行,10时40分到达小岛B处,若从灯塔C处分别测得小岛A、B在南偏东34°、68°方向,则小岛B处到灯塔C的距离是_海里2、在平面直角坐标系中,则点的坐标为_3、如图,线段AC与BD相交于点O,AD90°,要证明ABCDCB,还需添加的一个条件是_(只需填一个条件即可)4、若,则以、为边长的等腰三角形的周长为_5、如图,在ABC中,CACB,ACB120°,E为AB上一点,DCEDAE60°,AD2.4,BE7,则DE_三、解答题(10小题,每小题5分,共计50分)1、如图,在ABC中,ADBE,DAC10°,AE是BAC的外角MAC的平分线,BF平分ABC交AE于点F,求AFB的度数2、如图,AD为ABC的角平分线(1)如图1,若BEAD于点E,交AC于点F,AB4,AC7则CF ;(2)如图2,CGAD于点G,连接BG,若ABG的面积是6,求ABC的面积;(3)如图3,若B2C,ABm,ACn,则CD的长为 (用含m,n的式子表示)3、如图,将ABC绕点A逆时针旋转得到ADE,点D在BC上,已知B70°,求CDE的大小4、如图,等边ABC中,点D在BC上,CE=CD,BCE=60°,连接AD、BE(1)如图1,求证:AD=BE;(2)如图2,延长AD交BE于点F,连接DE、CF,在不添加任何辅助线和其它字母的情况下,请直接写出等于120°的角5、如图,ABAD,ACAE,BCDE,点E在BC上(1)求证:EACBAD;(2)若EAC42°,求DEB的度数6、如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DEAB,过点E作EFDE,交BC的延长线于点F(1)求证:CECF;(2)若CD2,求DF的长7、如图,在中,、分别是上的高和中线,求的长8、如图,AD,BC相交于点O,AODO(1)如果只添加一个条件,使得AOBDOC,那么你添加的条件是 (要求:不再添加辅助线,只需填一个答案即可);(2)根据已知及(1)中添加的一个条件,证明ABDC9、已知AMCN,点B在直线AM、CN之间,ABBC于点B(1)如图1,请直接写出A和C之间的数量关系: (2)如图2,A和C满足怎样的数量关系?请说明理由(3)如图3,AE平分MAB,CH平分NCB,AE与CH交于点G,则AGH的度数为 10、如图,在中,BD是的角平分线,点E在AB边上,求的周长-参考答案-一、单选题1、B【分析】依据三角形的内角和是180°以及等腰三角形的性质即可解答【详解】解:(180°-80°)÷2=100°÷2=50°;答:底角为50°故选:B【点睛】本题主要考查三角形的内角和定理及等腰三角形的两个底角相等的特点2、B【分析】根据题意画出图形,利用等腰三角形的性质及三角形内角和定理即可得到答案【详解】如图,在ABC中,CD是边AB上的中线AD=CD=BDA=DCA,B=DCBA+ACB+B=180° A+DCA+DCB+B=180即2A+2B=180°A+B=90°ACB=90°ABC是直角三角形故选:B【点睛】本题考查了等腰三角形的性质及三角形内角和定理,熟练运用这两个知识是关键3、C【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数【详解】解:c的范围是:53c5+3,即2c8c是奇数,c3或5或7,有3个值则对应的三角形有3个故选:C【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键4、D【分析】根据三角形的内角和定理、邻补角的性质即可得【详解】解:如图,又,即三角形的外角和是,故选:D【点睛】本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键5、A【分析】根据题意设,根据三角形内角和公式定理,进而表示出,进而根据三角形内角和定理根据即可求解【详解】解:A,DBC3DBA,DCB3DCA,设,即故选A【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键6、C【分析】先由翻折的性质得到AEN=AEN,BEM=BEM,从而可知NEM=×180°=90°,然后根据余角的定义找出BME的余角即可【详解】解:由翻折的性质可知:AEN=AEN,BEM=BEMNEM=AEN+BEM=AEA+BEB=×180°=90°由翻折的性质可知:MBE=B=90°由直角三角形两锐角互余可知:BME的一个余角是BEMBEM=BEM,BEM也是BME的一个余角NBF+BEM=90°,NEF=BMEANE、ANE是BME的余角综上所述,BME的余角有ANE、ANE、BEM、BEM故选:C【点睛】本题主要考查的是翻折的性质、余角的定义,掌握翻折的性质是解题的关键7、B【分析】由外角的性质可得ABD20°,由角平分线的性质可得DBC20°,由平行线的性质即可求解.【详解】解:(1)A30°,BDC50°,BDCAABD,ABDBDCA50°30°20°,BD是ABC的角平分线,DBCABD20°,DEBC,EDB=DBC20°,故选:B【点睛】本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键8、C【分析】根据三角形的三边关系定理逐项判断即可得【详解】解:三角形的三边关系定理:任意两边之和大于第三边A、,不能构成三角形,此项不符题意;B、,不能构成三角形,此项不符题意;C、,能构成三角形,此项符合题意;D、,不能构成三角形,此项不符题意;故选:C【点睛】本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键9、C【分析】根据三角形中线的性质得出CB的长为10,再用三角形面积公式计算即可【详解】解:AD是边BC上的中线,CD的长为5,CB=2CD=10,的面积为,故选:C【点睛】本题考查了三角形中线的性质和面积公式,解题关键是明确中线的性质求出底边长10、C【分析】已知给出一个角的的度数为80º,没有明确是顶角还是底角,要分类讨论,联合内角和求出底角即可【详解】解:等腰三角形的一个角是80°,当80º为底角时,它的一个底角是80º,当80º为顶角时,它的一个底角是,则它的一个底角是50º或80º故选:C【点睛】本题考查等腰三角形的性质,内角和定理,掌握分类讨论的思想是解决问题的关键二、填空题1、20【分析】根据题干所给的角的度数,易证是等腰三角形,而AB的长易求,即可根据等腰三角形的性质,得出BC的值【详解】解:据题意得,即,由题意可知这艘船行驶的时间为(小时)(海里),(海里)故答案为:20【点睛】本题考查了三角形外角的性质,等腰三角形的判定和性质,方向角的问题,解题的关键是由已知得到三角形是等腰三角形,要学会把实际问题转化为数学问题,再用数学知识解决实际问题2、 【分析】按照在x轴的上下方,分成两类情况讨论,如解析中的图像所示,分别利用边和角证明和成立,然后根据对应边相等,即可求出两种情况对应的点B的坐标【详解】解:如下图所示:由,可知:,当B点在x轴下方时,过点B1向x轴作垂线,垂足为E, 在与中: , 点坐标为 当B点在x轴上方时,过点B2向x轴作垂线,垂足为D由题意可知: 在与中 , 点坐标为 故答案为:或【点睛】本题主要是考查了全等三角形的判定和性质以及坐标点的求解,熟练利用全等三角形证明边相等,进而利用边长求解点的坐标,这是解决该题的关键3、答案不唯一,如:ACDB,ABDC,ABCDCB【分析】根据全等三角形的判定条件求解即可【详解】解:AD90°,BC=CB,只需要添加:ACDB或ABDC,即可利用HL证明ABCDCB;添加ABCDCB可以利用AAS证明ABCDCB,故答案为:答案不唯一,如:ACDB,ABDC,ABCDCB【点睛】本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键4、17【分析】先根据非负数的性质列式求出a、b的值,再分情况讨论求解即可【详解】解:,解得:,若是腰长,则底边为7,三角形的三边分别为3、3、7,3、3、7不能组成三角形;若是腰长,则底边为3,三角形的三边分别为7、7、3,能组成三角形,周长为:,以、为边长的等腰三角形的周长为17,故答案为:17【点睛】本题考查了等腰三角形的性质,绝对值和平方的非负性,以及三角形的三边关系,难点在于要分类讨论求解5、4.6【分析】在AB上截取BF=AD,连接CF,通过证明ADCBFC,可得ACD=BCF,CD=CF,由“SAS”可得DCEFCE,可得DE=EF,即可求得结果【详解】解:如图,在AB上截取BFAD,连接CF,CACB,ACB120°,CABCBA30°,DAE60°DACDAECAB30°DACCBA,且ADBF,ACBCADCBFC(SAS)ACDBCF,CDCF,ACBACE+ECF+BCFACE+ECF+ACDDCE+ECF120°ECF60°DCE,且CECE,DCCFDCEFCE(SAS)DEEFDEBEBFBEAD72.44.6,故答案为4.6【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,添加恰当的辅助线构造全等三角形是本题的关键三、解答题1、AFB40°【分析】由题意易得ADC90°,ACB80°,然后可得,进而根据三角形外角的性质可求解【详解】解:ADBE,ADC90°,DAC10°,ACB90°DAC90°10°80°,AE是MAC的平分线,BF平分ABC,又MAEABF+AFB,MACABC+ACB,AFBMAEABF【点睛】本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键2、(1)3(2)12(3)【分析】(1)利用ASA证明AEFABE,得AE=AB=4,得出答案;(2)延长CG、AB交于点H,设SBGC=SHGB=a,用两种方法表示ACH的面积即可;(3)在AC上取AN=AB,可得CD=DN=n-m,根据ABD和ACD的高相等,面积比等于底之比可求出CD的长(1)AD是ABC的平分线,BAD=CAD,BEAD,BEA=FEA,在AEF和AEB中, ,AEFAEB(ASA),AF=AB=4,AC=7 CF=AC-AF=7-4=3,故答案为:3;(2)延长CG、AB交于点H,如图,由(1)知AC=AH,点G为CH的中点,设SBGC=SHGB=a,根据ACH的面积可得:SABC+2a=2(6+a),SABC=12;(3)在AC上取AN=AB,如图,AD是ABC的平分线,NAD=BAD,在ADN与ADB中,ADNADB(SAS),AND=B,DN=BD,B=2C,AND=2C,C=CDN,CN=DN=AC-AB=n-m,BD=DN=n-m,根据ABD和ACD的高相等,面积比等于底之比可得:,故答案为:【点睛】本题主要考查了全等三角形的判定与性质,角平分线的定义,三角形的面积等知识,利用角的轴对称性构造全等三角形是解题的关键3、【分析】先由旋转的性质证明再利用等边对等角证明从而可得答案.【详解】解: 把ABC绕点A逆时针旋转得到ADE,B70°, 【点睛】本题考查的是旋转的性质,等腰三角形的性质,掌握“旋转前后的对应角相等与等边对等角”是解本题的关键.4、(1)见解析;(2)等于120°的角有BFC、BDE、DFE=120°【分析】(1)利用SAS证明ADCBEC,即可证明AD=BE;(2)证明CDE为等边三角形,可求得BDE=120°;利用全等三角形的性质可求得BFD=BCA=60°,推出DFE=120°;同理可推出BFC=AFC+BFD=120°【详解】(1)证明:等边ABC中,CA=CB,ACB=60°,CE=CD,BCE=60°,ADCBEC(SAS),AD=BE;(2)等于120°的角有BFC、BDE、DFE=120°CE=CD,BCE=60°,CDE为等边三角形,CDE=60°,BDE=120°;ADCBEC,DAC=EBC,又BDF=ADC,BFD=BCA=60°,DFE=120°;同理可求得AFC=ABC=60°,BFC=AFC+BFD=120°;综上,等于120°的角有BFC、BDE、DFE=120°【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键5、(1)见解析;(2)42°【分析】(1)利用边边边证得ABCADE,可得BACDAE,即可求证;(2)根据等腰三角形的性质,可得AECC69°,再由ABCADE,可得AEDC69°, 即可求解【详解】(1)证明:ABAD,ACAE,BCDE,ABCADE BACDAE BACBAEDAEBAE即EACBAD; (2)解:ACAE,EAC=42°,AECC ×(180°EAC) ×(180°42°)69°ABCADE,AEDC69°, DEB180°AEDC180°69°69°42°【点睛】本题主要考查了全等三角形的判定和性质,等腰三角形的性质,熟练掌握全等三角形的判定和性质定理,等腰三角形的性质定理是解题的关键6、(1)证明见解析;(2)4【分析】(1)根据等边三角形的性质和平行线的性质可证得EDCECDDEC60°,再根据直角定义和三角形的外角性质证得FFEC30°,利用等角对等边即可证得结论;(2)由等角对等边可知CE=DC=2,结合(1)中结论即可求解(1)证明:ABC是等边三角形,ABACB60°DEAB,BEDC60°,ACED60°,EDCECDDEC60°,EFED,DEF90°,F30°F+FECECD60°,FFEC30°,CECF(2)解:由(1)可知EDCECDDEC60°,CEDC2又CECF,CF2DFDC+CF2+24【点睛】本题考查等边三角形的性质、等腰三角形的判定、平行线的性质、三角形的外角性质、线段的和与差,熟练掌握相关知识的联系与运用是解答的关键7、6cm【分析】先根据中线的定义结合已知条件求得AB,然后再运用三角形的面积公式求解即可.【详解】解:是边上的中线,是的中点,=.【点睛】本题主要考查了三角形的中线的定义以及三角形的面积公式,掌握三角形中线的定义成为解答本题的关键.8、(1)OB=OC(或,或);(2)见解析【分析】(1)根据SAS添加OB=OC即可;(2)由(1)得AOBDOC,由全等三角形的性质可得结论【详解】解:(1)添加的条件是:OB=OC(或,或)证明:在和中所以,AOBDOC(2)由(1)知,AOBDOC所以,ABDC【点睛】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解答本题的关键9、(1)A+C90°;(2)CA90°,见解析;(3)45°【分析】(1)过点B作BEAM,利用平行线的性质即可求得结论;(2)过点B作BEAM,利用平行线的性质即可求得结论;(3)利用(2)的结论和三角形的外角等于和它不相邻的两个内角的和即可求得结论【详解】(1)过点B作BEAM,如图,BEAM,AABE,BEAM,AMCN,BECN,CCBE,ABBC,ABC90°,A+CABE+CBEABC90°故答案为:A+C90°;(2)A和C满足:CA90°理由:过点B作BEAM,如图,BEAM,AABE,BEAM,AMCN,BECN,C+CBE180°,CBE180°C,ABBC,ABC90°,ABE+CBE90°,A+180°C90°,CA90°;(3)设CH与AB交于点F,如图,AE平分MAB,GAFMAB,CH平分NCB,BCFBCN,B90°,BFC90°BCF,AFGBFC,AFG90°BCFAGHGAF+AFG,AGHMAB+90°BCN90°(BCNMAB)由(2)知:BCNMAB90°,AGH90°45°45°故答案为:45°【点睛】本题考查平行线的性质以及三角形外角的性质,由题作出辅助线是解题的关键10、【分析】由题意结合角平分线性质和全等三角形判定得出,进而依据的周长进行求解即可.【详解】解:,,BD是的角平分线,,在和中,,,的周长.【点睛】本题考查全等三角形的判定与性质以及角平分线性质,熟练掌握利用全等三角形的判定与性质以及角平分线性质进行边的等量替换是解题的关键.