2022年人教版九年级数学下册第二十七章-相似定向测评试题(含答案解析).docx
-
资源ID:28158578
资源大小:718.92KB
全文页数:34页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年人教版九年级数学下册第二十七章-相似定向测评试题(含答案解析).docx
人教版九年级数学下册第二十七章-相似定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,BC2,则AB的长为( )A6B5C4D32、如图,RtABC中,ACB90°,分别以AB,BC,AC为边在ABC外部作正方形ADEB,CBFG,ACHI将正方形ABED沿直线AB翻折,得到正方形ABE'D',AD'与CH交于点N,点E'在边FG上,D'E'与CG交于点M,记ANC的面积为S1,四边形的面积为S2,若CN2NH,S1+S214,则正方形ABED的面积为()A25B26C27D283、如图,已知四边形ABCD是矩形,点E在BA的延长线上,EC分别交AD,BD于点F,G,若,则的值为( )ABC2D4、如图的两个四边形相似,则a的度数是( )A120°B87°C75°D60°5、如图,在ABCD中,对角线AC,BD相交于点O,在DC的延长线上取一点E,连接OE交BC于点F,若AB4,BC6,CE1,则CF的长为()AB1.5CD16、下列图形中,ABC与DEF不一定相似的是( )ABCD7、如图,在ABC中,点D、E是AB、AC的中点,若ADE的面积是1,则四边形BDEC的面积为()A4B3C2D18、如图,在正方形ABCD中,BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF交于点H下列结论:CF2AE;DFPBPH;DP2PHPC;PE:BC(23):3正确的有()A1个B2个C3个D4个9、如图,已知矩形ABCD中,AB3,BE2,EFBC若四边形EFDC与四边形BEFA相似而不全等,则CE的值为( )AB6CD910、如图,点P是ABCD边AD上的一点,E,F分别是BP,CP的中点,已知ABCD面积为16,那么PEF的面积为( )A8B6C4D2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,小红把梯子斜靠在墙壁上,梯脚距墙2米,小红上了两节梯子到点,此时点距墙1.8米,长0.6米,则梯子的长为_米2、已知,且3y2z6,则xy=_3、如图,在ABC中,D、E分别是边BC、AC上的点,AD与BE相交于点F,若E为AC的中点,BD:DC2:3,则AF:FD的值是 _4、若,则_5、若,则_三、解答题(5小题,每小题10分,共计50分)1、如图,一次函数的图象与轴交于点,与轴交于点,与反比例函数的图象交于B,D两点,且AC=BC(1)求反比例函数的解析式;(2)已知是轴正半轴上一点,作轴交直线于点,交双曲线于点,当,为顶点的四边形为平行四边形时,请写出点的坐标2、有一边是另一边的倍的三角形叫做智慧三角形,这两边中较长边称为智慧边,这两边的夹角叫做智慧角(1)已知RtABC为智慧三角形,且RtABC的一边长为,则该智慧三角形的面积为 ;(2)如图,在ABC中,C105°,B30°,求证:ABC是智慧三角形;(3)如图,ABC是智慧三角形,BC为智慧边,B为智慧角,A(3,0),点B,C在函数上()的图象上,点C在点B的上方,且点B的纵坐标为当ABC是直角三角形时,求k的值3、如图,已知EACDAB,DB,求证:ABCADE4、如图,中,为内部一点,且(1)求证:;(2)判断和数量关系,并说明理由5、已知,在平面直角坐标系中,点O为坐标原点,A点坐标为,B点坐标为,且满足(1)如图1,求、的长;(2)如图2,P是y轴负半轴上一点,点C在第二象限,连接、,且,设,请用含t的式子表示的面积;(3)如图3,在(2)的条件下,作轴交的延长线于点D,与y轴交于点E,若E是的中点,求t值-参考答案-一、单选题1、C【解析】【分析】由平行线分线段成比例,可得比例式:,代入值,利用线段间的关系,直接求解答案【详解】解:且, , , 故选:C【点睛】本题主要是考查了平行线分线段成比例,正确找到对应边长的比例式,是求解这类问题的关键2、B【解析】【分析】设,则,证明,得出,根据,再证明,得出,可以得出,得出等式,求解即可得到【详解】解:设,则,由题意知:,在和中,在中由勾股定理得:,在和中,解得:,故选:B【点睛】本题考查正方形的性质、三角形相似、三角形全等、勾股定理,解题的关键是掌握相应的判定定理,通过转化的思想及等量代换的思想进行求解3、B【解析】【分析】由矩形可证得,则,设AB=AF=CD=x ,AE=AD=y,即可求得的值【详解】四边形ABCD是矩形DCE=AEC,CDA=EAD设AB=AF=CD=x ,AE=AD=y,则有给方程两边同时除以,令为t则有解得,(舍去)则t=则=故答案选:B【点睛】本题考查了相似三角形性质及判定,将表示为是解题的关键4、B【解析】【分析】根据相似多边形的性质,可得 ,再根据四边形的内角和等于360°,即可求解【详解】解:如图,两个四边形相似, ,两个四边形相似,且四边形的内角和等于360°, 故选:B【点睛】本题主要考查了相似多边形的性质,多边形的内角和,熟练掌握相似多边形的对应边成比例,对应角相等是解题的关键5、D【解析】【分析】过O作OMBC交CD于M,根据平行四边形的性质得到BODO,CDAB4,ADBC6,根据三角形的中位线的性质得到CMCD2,OMBC3,通过CFEMOE,根据相似三角形的性质得到,代入数据即可得到结论【详解】解:过O作OMBC交CD于M,在ABCD中,BODO,CDAB4,ADBC6,CMCD2,OMBC3,OMCF,CFEMOE,即,CF1故选:D【点睛】本题考查了平行四边形的性质、相似三角形的判定与性质等知识解此题的关键是准确作出辅助线,合理应用数形结合思想解题6、A【解析】【分析】根据相似三角形的判定定理进行解答【详解】解:A、当EF与BC不平行时,ABC与DEF不一定相似,故本选项符合题意;B、由ABC=EFC=90°,ACB=EDF可以判定ABCDEF,故本选项不符合题意;C、由圆周角定理推知B=F,又由对顶角相等得到ACB=EDF,可以判定ABCDEF,故本选项不符合题意;D、由圆周角定理得到:ACB=90°,所以根据ACB=CDB=90°,ABC=CBD,可以判定ABCDEF,故本选项不符合题意;故选:A【点睛】本题考查了相似三角形的判定,解题时,需要熟练掌握圆周角定理和相似三角形的判定定理7、B【解析】【分析】由DE是ABC的中位线,得DEBC,且DEBC,则ADEABC,从而BC,从而解决问题【详解】解:点D、E是AB、AC的中点,DE是ABC的中位线,DEBC,且DEBC,ADEABC,ADE的面积是1,4,3,故选:B【点睛】本题考查了三角形中位线定理,三角形相似的判定和性质,熟练掌握中位线定理,灵活运用三角形相似的性质是解题的关键8、D【解析】【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论【详解】解:BPC是等边三角形,BPPCBC,PBCPCBBPC60°,在正方形ABCD中,ABBCCD,AADCBCD90°,ABEDCF30°,BE2AE,ADBC,FEPPBC,EFPPCB,EPFBPC,FEPEFPEPF60°,EFP是等边三角形,BECF,CF2AE,故正确;PCCD,PCD30°,PDC75°,FDP15°,DBA45°,PBD15°,FDPPBD,DFPBPC60°,DFPBPH,故正确;PDHPCD30°,DPHDPC,DPHCPD,DP2PHPC,故正确;ABE30°,A90°,AEABBC,DCF30°,DFDCBC,EFAE+DFBCBCBC,FE:BC(23):3,EFPE,PE:BC(23):3,故正确,综上,四个选项都正确,故选:D【点睛】本题考查了相似三角形的判定和性质,正方形的性质,等边三角形的性质,解答此题的关键是熟练掌握性质和定理9、A【解析】【分析】设CE=x,由四边形EFDC与四边形BEFA相似,根据相似多边形对应边的比相等列出比例式,求解即可【详解】解:设CE=x,四边形EFDC与四边形BEFA相似,AB=3,BE=2,EF=AB,解得:x=4.5,故选:A【点睛】本题考查了相似多边形的性质,本题的关键是根据四边形EFDC与四边形BEFA相似得到比例式10、D【解析】【分析】根据平行线间的距离处处相等,得到,根据EF是PBC的中位线,得到PEFPBC,EF=,得到计算即可【详解】点P是ABCD边AD上的一点,且 ABCD面积为16,;E,F分别是BP,CP的中点, EFBC,EF=,PEFPBC,故选D【点睛】本题考查了平行四边形的性质,三角形中位线定理,三角形相似的判定和性质,熟练掌握中位线定理,灵活运用三角形相似的性质是解题的关键二、填空题1、6【解析】【分析】由证明可得再代入求解即可.【详解】解:由题意得: 解得: 经检验符合题意; 故答案为:【点睛】本题考查的是相似三角形的运用,利用相似三角形的性质列方程是解本题的关键.2、60【解析】【分析】由题意,把比例化简得到,然后结合3y2z6,先求出,然后求出x、y,即可得到答案【详解】解:,;故答案为:60【点睛】本题考查了比例的性质,熟练掌握比例的性质进行化简是解题的关键3、#2.5【解析】【分析】过D作DHAC交BE于H,根据相似三角形的性质即可得到结论【详解】解:过D作DHAC交BE于H,DHFAEF,BDHBCE,若E为AC的中点,CEAE,BD:DC2:3,BD:BC2:5,DF:AF2:5,AF:FD故答案为:【点睛】本题考查了三角形相似的判定和性质,合理添加辅助线,正确选择比例式是解题的关键4、【解析】【分析】直接利用已知将原式变形进而得出x,y之间的关系进而得出答案【详解】解:,2x+2y=3x,故2y=x,则,故答案为:【点睛】此题主要考查了比例的性质,正确将原式变形是解题关键5、#【解析】【分析】由得,将式子化简变形,然后代入求解即可【详解】解:,故答案是:【点睛】本题考查比例的计算,解题的关键是掌握比例的性质三、解答题1、(1)反比例函数的解析式为y=;(2)P点坐标为(2,0)或(-2+2,0)【解析】【分析】(1)首先求出一次函数与坐标轴的交点,进而利用相似三角形的判定与性质得出B点坐标,进而求出反比例函数解析式;(2)利用平行四边形的性质,进而表示出MN的长,再解方程得出a的值,即可得出P点坐标【详解】解:(1)如图1,过点B作BEx轴于点E,一次函数y=x+1的图象与x轴交于点A,与y轴交于点C,当x=0时,y=1;当y=0时,x=-2,故A(-2,0),C(0,1),COx轴于点O,BEx轴于点E,COBE,AOCAEB,AC=BC,AO=OE=2,即B点横坐标为:2,则y=×2+1=2,B(2,2),把B点代入y=(k0),解得:xy=4,反比例函数的解析式为y=;(2)如图,由题意可得:COMN,只有CO=MN时,O,C,M,N为顶点的四边形为平行四边形,点P在x轴正半轴上,分两种情况:当P点在B点右侧时,设P(a,0),(a0)则N(a,),M(a,a+1),故MN=a+1-=CO=1,解得:a=±2,经检验,a=±2是分式方程的解,但a=-20舍去;当P点在B点左侧时,设P(a,0),则N(a,),M(a,a+1),故MN=-(a+1)=CO=1,解得:a=-2+2或a=-2-2,经检验,a=-2+2或a=-2-2都是分式方程的解,但a= -2-20舍去;综上所述,P点坐标为(2,0)或(-2+2,0)【点睛】本题是反比例函数的综合题,主要考查了反比例函数性质、相似三角形的判定与性质以及分式方程和解一元二次方程,正确表示MN的长是解题关键2、(1)或1或或或;(2)见解析;(3)【解析】【分析】(1)由于不确定是哪条边的边长,故需分3种情况讨论每种情况中,不确定长的边是否为智慧边,故又需要分类讨论(2)过作边的垂线,构造两个有特殊角的直角三角形,即能用把各边关系表示出来,易得是AC的倍(3)由题意可知,因此当为直角三角形时,不可能为斜边,即只分或两种情况讨论作辅助线构造三垂直模型,证得相似或全等三角形,再利用对应边的关系把、的坐标表示出来,再代入计算【详解】解:(1)如图1,设,若,则,若,即,则若,若,若,故答案为:或1或或或(2)证明:如图2,过点作于点,在中,中,是智慧三角形(3)是智慧三角形,为智慧边,为智慧角是直角三角形,不可能为斜边,即或当时,过作轴于,过作于,过作轴于,如图3,设,则的纵坐标为,即,点、在在函数上的图象上,解得:(舍去),当时,过作轴于,过作轴于,如图4,设,则,点、在在函数上的图象上,解得:综上所述,的值为或【点睛】本题考查了新定义的理解和运用,解直角三角形,相似和全等三角形的判定和性质,反比例函数的性质,分类讨论思想解题关键是理解新定义并运用其性质转化条件,在直角坐标系中把已知直角构造在三垂直模型里是通常办法3、见解析【解析】【分析】由EACDAB,可推出BAC=DAE,再由B=D,即可证明ABCADE【详解】解:EACDAB,EAC+DAC=DAB+DAC,即BAC=DAE,又B=D,ABCADE【点睛】本题主要考查了相似三角形的判定,熟知相似三角形的判定条件是解题的关键4、(1)见解析;(2)PA=2PC,见解析【解析】【分析】(1)利用等腰三角形的性质、三角形内角和定理以及等式的性质判断出PBC=PAB,进而得出结论;(2)由(1)的结论得出PAPB=PBPC=ABBC,进而得出ABBC=2,即可得出结论【详解】(1)证明:ACB=90°,AC=BC,ABC=45°=PBA+PBC,又APB=135°,PAB+PBA=45°,PBC=PAB,又APB=BPC=135°,PABPBC(2)和数量关系是PA=2PC理由如下PABPBC,PAPB=PBPC=ABBC,在RtABC中,BC=AC,AB=2BC,PAPB=PBPC=2,PA=2PB,PB=2PC,PA=2PC【点睛】本题主要考查相似三角形的判定与性质,熟练三角形内角和定理,等腰三角形的性质等知识点是解题关键,综合性较强,有一定难度5、(1)OA=6,OB=6;(2)SAPC=12t2+3t;(3)t=2【解析】【分析】(1)根据平方和二次根式的非负性计算即可;(2)过点C作CFy轴,证明BOPPFC,即可得解;(3)过点C作CFy轴,由全等可得CF=PO=t,证明CEFBEO,得到EFOE=CFOB,即可得解;【详解】(1),a-62+b-6=0,a-6=0,b-6=0,a=6,b=6,OA=6,OB=6;(2)过点C作CFy轴,BPO+CPF=90°,OBP+BPO=90°,CPF=OBP,在BOP和PFC中,BP=PCBOP=PFC=90°OBP=CPF,BOPPFC,CF=PO=t,AP=AO+OP=6+t,SAPC=12CF·AP=12t6+t=12t2+3t;(3)过点C作CFy轴,由(2)可知BOPPFC,CF=PO=t,FP=OB=6,ADBO,E是BD的中点,D=EBO,DE=BE,在和OBE中,D=EBODE=BEAED=OEB,ADEOBE,AE=EO=3,EF=PF-OP-OE=3-t,CFBO,CEFBEO,EFOE=CFOB,即3-t3=t6,t=2【点睛】本题主要考查了位置与坐标,完全平方公式,全等三角形的判定与性质,相似三角形的判定与性质,二次根式有意义的条件,准确利用平行线的性质证明三角形全等求解是解题的关键