2022年北师大版七年级数学下册第五章生活中的轴对称同步练习试题(含详解).docx
-
资源ID:28158718
资源大小:525.19KB
全文页数:22页
- 资源格式: DOCX
下载积分:9金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年北师大版七年级数学下册第五章生活中的轴对称同步练习试题(含详解).docx
七年级数学下册第五章生活中的轴对称同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下面每个选项中,左边和右边的符号作为图形成轴对称的是( )A%BCD2、下列垃圾分类的标识中,是轴对称图形的是( )ABCD3、下列图形中是轴对称图形的有( )个A1个B2个C3个D4个4、在下列国际货币符号中,为轴对称图形的是( )ABCD5、第24届冬奥会将于2022年2月4日至20日在北京市和张家口市联合举行下面是从历届冬奥会的会徽中选取的部分图形,其中是轴对称图形的是( )ABCD6、下列说法正确的是( )A轴对称图形是由两个图形组成的B等边三角形有三条对称轴C两个等面积的图形一定轴对称D直角三角形一定是轴对称图形7、甲骨文是我国的一种古代文字,下列甲骨文中,不是轴对称的是( )ABCD8、在千家万户团圆的时刻,我市一批医务工作者奔赴武汉与疫情抗争,他们是“最美逆行者”.下列艺术字中,可以看作是轴对称图形的是( )A BCD9、下列在线学习平台的图标中,是轴对称图形的是()ABCD10、如图,ABC与ABC关于直线MN对称,BB交MN于点O,则下列结论不一定正确的是()AACACBBOBOCAAMNDABBC第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,腰长为22的等腰ABC中,顶角A45°,D为腰AB上的一个动点,将ACD沿CD折叠,点A落在点E处,当CE与ABC的某一条腰垂直时,BD的长为_2、如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有_种3、如果一个图形沿一条直线_,直线两旁的部分能够_,这个图形就叫做_;这条直线就是它的_4、如图,方格纸中的每个小方格的边长为1,ABC是格点三角形(即顶点恰好是小方格的顶点)若格点ACP与ABC全等(不与ABC重合),则所有满足条件的点P有_个5、在线段角圆长方形梯形三角形等边三角形中,是轴对称图形的有_个三、解答题(5小题,每小题10分,共计50分)1、如图,网格中的ABC与DEF为轴对称图形(1)利用网格线作出ABC与DEF的对称轴l;(2)如果每一个小正方形的边长为1,请直接写出ABC的面积 2、如图1,射线OP平分MON,在射线OM,ON上分别截取线段OA,OB,使OAOB,在射线OP上任取一点D,连接AD,BD易得:ADBD(1)如图2,在RtABC中,ACB90°,A60°,CD平分ACB,求证:BCAC+AD;(2)如图3,在四边形ABDE中,AB10,DE2,BD=6,C为BD边中点若AC平分BAE,EC平分AED,ACE120°,求AE的值3、如图,在ABC中,ACB的平分线CD与外角EAC的平分线AF所在的直线交于点D(1)求证:B=2D;(2)作点D关于AC所在直线的对称点D,连接AD,CD当ADAD时,求BAC的度数;试判断DAD与BAC的数量关系,并说明理由4、如图,边长为1的正方形网格中,ABC的三个顶点A、B、C都在格点上(1)画出ABC关于x轴的对称图形DEF(其中点A、B、C的对称点分别是D、E、F),则点D坐标为 (2)在y轴上找一点P,使得PA+PC最短,请画出点P所在的位置,并写出点P的坐标5、如图1是4×4正方形网格,其中已有3个小方格涂成了黑色现要从其余13个白色小方格中选出一个也涂成黑色,使整个涂成黑色的图形成为轴对称图形(1)可能的位置有 种 (2)请在图1中利用阴影标出所有可能情况图1 备用图-参考答案-一、单选题1、C【分析】轴对称图形是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,据此定义可直接得出【详解】解:根据轴对称图形的定义可得出:C选项经过对折后可完全重合,故选:C【点睛】题目主要考查轴对称图形的定义,深刻理解此定义是解题关键2、B【详解】解:图和是轴对称图形,故选:B【点睛】本题考查了轴对称图形,熟记轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键3、B【分析】根据轴对称图形的定义:一个图形沿一条直线对折,直线两旁的部分能够完全重合,则这个图形就是轴对称图形,即可解答【详解】解:根据对称轴的定义可知,是轴对称图形的有第1和第3个故选:B【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合4、C【分析】根据轴对称图形的概念“如果一个图形沿一条直线对折后两部分完全重合,那么这样的图形叫做轴对称图形”逐项判断即可求解【详解】解:A.不是轴对称图形,不合题意;B.不是轴对称图形,不合题意;C.是轴对称图形,符合题意;D.不是轴对称图形,不合题意故选:C【点睛】本题主要考查轴对称图形的意义和辨识,熟练掌握轴对称图形的概念是解题的关键5、B【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行逐一判断即可【详解】解:A、不是轴对称图形,故此选项不符合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项符合题意;故选B【点睛】本题主要考查了轴对称图形的定义,熟知定义是解题的关键6、B【分析】根据轴对称图形的定义逐一进行判定解答【详解】解:A、轴对称图形可以是1个图形,不符合题意;B、等边三角形有三条对称轴,即三边垂直平分线,符合题意;C、两个等面积的图形不一定轴对称,不符合题意;D、直角三角形不一定是轴对称图形,不符合题意故选:B【点睛】本题考查轴对称图形的定义与性质,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形折痕所在的这条直线叫做对称轴7、D【分析】根据轴对称图形的概念分别判断得出答案【详解】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项符合题意;故选:D【点睛】本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形8、B【分析】把一个图形沿某一条直线对折,直线两旁的部分能够完全重合的图形叫做轴对称图形,根据定义判断即可【详解】解:A、不是轴对称图形B、是轴对称图形C、不是轴对称图形D、不是轴对称图形故选:B【点睛】本题主要是考查了轴对称图形的定义,熟练掌握轴对称图形的定义是解题的关键9、B【分析】根据轴对称图形定义进行分析即可如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:选项A,C,D都不能找到这样的一条直线,使这些图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;选项B能找到这样的一条直线,使这个图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形故选:B【点睛】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合10、D【分析】根据轴对称的性质解答【详解】解:ABC与ABC关于直线MN对称,BB交MN于点O,ACAC,BOBO,AAMN,但ABBC不正确,故选:D【点睛】此题考查了轴对称的性质:轴对称两个图形的对应边相等,对应角相等,熟记性质是解题的关键二、填空题1、或2【分析】分两种情况:当CEAB时,设垂足为M,在RtAMC中,A45°,由折叠得:ACDDCE22.5°,证明BCMDCM,得到BMDM,证明MDE是等腰直角三角形,即可得解;当CEAC时,根据折叠的性质,等腰直角三角形的判定与性质计算即可;【详解】当CEAB 时,如图,设垂足为M,在RtAMC中,A45°,由折叠得:ACDDCE22.5°,等腰ABC中,顶角A45°,BACB67.5°,BCM22.5°,BCMDCM,在BCM和DCM中,BCMDCM(ASA),BMDM,由折叠得:EA45°,ADDE,MDE是等腰直角三角形,DMEM,设DMx,则BMx,DEx,ADxAB22,2xx22,解得:x,BD2x2;当CEAC时,如图,ACE90°,由折叠得:ACDDCE45°,等腰ABC中,顶角A45°,EA45°,ADDE,ADCEDC90°,即点D、E都在直线AB上,且ADC、DEC、ACE都是等腰直角三角形,ABAC22,ADAC2,BDABAD(22)(2),综上,BD的长为或2故答案为:或2【点睛】本题主要考查折叠的性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,注重分类讨论思想的运用是解题的关键2、3【分析】根据轴对称图形的定义:如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形,做答即可【详解】解:如图所示,根据轴对称图形的定义可知,选择一个小正三角形涂黑,使整个被涂黑的图案构成一个轴对称图形,选择的位置可以有以下3种可能:故答案为:3【点睛】本题考查轴对称图形,解题的关键是熟知轴对称的概念3、折叠 互相重合 轴对称图形 对称轴 【分析】根据轴对称图形的概念直接填空即可【详解】解:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴故答案为:折叠,互相重合,轴对称图形,对称轴【点睛】本题考查了轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴,解题关键是熟记定义4、3【分析】如图,把沿直线对折可得: 把沿直线对折,从而可得答案.【详解】解:如图,把沿直线对折可得: 把沿直线对折可得: 所以符合条件的点有3个,故答案为:3【点睛】本题考查的轴对称的性质,全等三角形的概念,掌握“利用轴对称的性质确定全等三角形”是解本题的关键.5、5【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形据此作答【详解】解:线段的垂直平分线所在的直线是对称轴,是轴对称图形,符合题意;角的平分线所在直线就是对称轴,是轴对称图形,符合题意;圆有无数条对称轴,是轴对称图形,符合题意;长方形有二条对称轴,是轴对称图形,符合题意;梯形不一定是轴对称图形,不符合题意;三角形不一定是轴对称图形,不符合题意;等边三角形三条中线所在的直线是对称轴,是轴对称图形,符合题意;故轴对称图形共有5个故答案为:5【点睛】本题考查了轴对称的概念轴对称的关键是寻找对称轴,图象沿某一直线折叠后可以重合三、解答题1、(1)见解析;(2)【分析】(1)对应点连线段的垂直平分线即为对称轴;(2)根据三角形的面积等于矩形面积减去周围三个三角形面积即可【详解】解:(1)如图,直线l即为所求;(2)SABC2×4×1×2×2×2×1×43【点睛】本题主要考查了画轴对称图形,熟练掌握画轴对称图形的关键是找到对称轴,得到对应点是解题的关键2、(1)见解析;(2)15【分析】(1)证ECDACD(SAS),得EC=AC,DE=AD,CED=A=60°,再证BE=DE,则BE=AD,即可得出结论;(2)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG,证ACBACF(SAS),得CB=CF=3,AF=AB=10,BCA=FCA同理可证CGECDE(SAS),得CG=CD=3,GE=DE=2,DCE=GCE,再证CFG是等边三角形,得FG=CG=3,即可求解【详解】(1)证明:在CB上截取CE=AE,连接DE,如图所示:CD平分ACB,BCD=ACD,又CD=CD,ECDACD(SAS),EC=AC,DE=AD,CED=A=60°,ACB=90°,A=60°,B=30°,又CED=EDB+B,EDB=60°-30°=30°,EDB=B,BE=DE,BE=AD,BC=EC+BE,BC=AC+AD;(2)解:在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG,如图所示:C是BD边的中点,BD=6,CB=CD=BD=3,AC平分BAE,BAC=FAC,又AC=AC,ACBACF(SAS),CB=CF=3,AF=AB=10,BCA=FCA同理可证:CGECDE(SAS),CG=CD=3,GE=DE=2,DCE=GCE,CB=CD,CG=CF,ACE=120°,BCA+DCE=180°-120°=60°,FCA+GCE=60°,FCG=180°-60°-60°=60°,FGC是等边三角形,FG=FC=3,AE=AF+GE+FG=10+2+3=15【点睛】本题考查了全等三角形的判定及性质、角平分线定义、等边三角形的判定与性质、等腰三角形的判定与性质等知识,本题综合性强,熟练掌握等边三角形的判定与性质,正确作出辅助线,构造全等三角形是解题的关键3、(1)见解析;(2)90°;BAC+DAD=180°,理由解析【分析】(1)根据角平分线的定义,可得,再由三角形的外角性质,即可求证;(2)由对称的性质可知DAC=DAC,根据垂直的定义,可得DAD=90°,从而得到,进而得到FAE=CAF=45°,即可求解;设DAD=,同可得,从而得到进而得到BAC=180°,即可求解【详解】(1)证明:CD平分ACB,AF是外角EAC的平分线,又CAF=D+ACD,CAE=B+ACB,D=CAFACD=B=2D;(2)由对称的性质可知DAC=DAC,当ADAD时,DAD=90°,CAF=180°DAC=45°FAE=CAF=45°BAC=180°FAECAF=90°;BAC+DAD=180°,理由如下:设DAD=,同可得,CAE=2CAF=,BAC=180°CAE=180°BAC+DAD=180°【点睛】本题主要考查了角平分线的定义,三角形的外角性质,轴对称图形,熟练掌握相关知识点是解题的关键4、(1)见解析,(4,4);(2)见解析,(0,2)【分析】(1)先分别作出A、B、C关于x轴的对称点D、E、F,再连接D、E、F三点即可;(2)由上问已知,C点关于y轴的对称点是点,连接A、两点,与y轴的交点即为P点,这时PA+PC最短,求出直线的解析式,即可求出答案【详解】(1)ABC关于x轴的对称图形DEF如图所示:D(4,4);故答案为:(4,4);(2)如图所示:C点关于y轴的对称点是点,连接A、两点,与y轴的交点即为P点,这时PA+PC最短,设直线的解析式为,把,代入得:,解得:,令,则,【点睛】本题考查了轴对称变换,掌握轴对称的坐标点特点是解题关键5、(1)4;(2)见解析【分析】直接利用轴对称图形的性质分别得出符合题意的答案【详解】解:(1)可能的位置有4种,故答案为:4;(2)如图所示:,【点睛】本题主要考查了利用轴对称设计图案,正确把握轴对称图形的定义是解题关键