2022年最新北师大版七年级数学下册第六章概率初步专题训练试题(含详细解析).docx
-
资源ID:28158902
资源大小:207.30KB
全文页数:16页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年最新北师大版七年级数学下册第六章概率初步专题训练试题(含详细解析).docx
北师大版七年级数学下册第六章概率初步专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、 “翻开九年级上册数学书,恰好翻到第100页”,这个事件是( )A必然事件B随机事件C不可能事件D确定事件2、一个不透明布袋中有2个红球,3个白球,这些球除颜色外无其他差别,摇匀后从中随机摸出一个小球,该小球是红色的概率为()ABCD3、小李同学掷一枚质地均匀的骰子,点数为2的一面朝上的概率为()ABCD4、下列事件中,属于必然事件的是( )A通常加热到100°C时,水沸腾B扔一枚硬币,结果正面朝上C在只装了红球的袋子中摸到白球D掷一枚质地均匀的正方体骰子,向上的一面点数是65、掷一个骰子时,点数小于2的概率是( )ABCD06、下列事件中属于必然事件的是( )A正数大于负数B下周二,温州的天气是阴天C在一个只装有白球的袋子中摸出一个红球D在一张纸上任意画两条线段,这两条线段相交7、一个质地均匀的小正方体,六个面分别标有数字“”,“”,“”“”,“”,“”,抛出小正方体后,观察朝上一面的数字,出现偶数的概率是( )ABCD8、下列事件中属于必然事件的是( )A随机买一张电影票,座位号是奇数号B打开电视机,正在播放新闻联播C任意画一个三角形,其外角和是D掷一枚质地均匀的硬币,正面朝上9、下列事件中是不可能事件的是()A铁杵成针B水滴石穿C水中捞月D百步穿杨10、关于“明天是晴天的概率为90”,下列说法正确的是( )A明天一定是晴天B明天一定不是晴天C明天90的地方是晴天D明天是晴天的可能性很大第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个不透明的口袋中,装有黑球5个,红球6个,白球7个,这些球除颜色不同外,没有任何区别,现从中任意摸出一个球,恰好是红球的概率为_2、某商场开展购物抽奖活动,抽奖箱内有标号分别为1、2、3、4、5、6、7、8、9、10十个质地、大小相同的小球,顾客从中任意摸出一个球,摸出的球的标号是3的倍数就得奖,顾客得奖概率是_3、设有12只型号相同的杯子,其中一等品7只,二等品2只,三等品3只则从中任意取一只,是二等品的概率等于_4、转动如图所示的这些可以自由转动的转盘(转盘均被等分),当转盘停止转动后,根据“指针落在白色区域内”的可能性的大小,将转盘的序号按事件发生的可能性从小到大排列为_5、在一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,如果从中随机摸出一个,那么摸到黄球的可能性大小是_ 三、解答题(5小题,每小题10分,共计50分)1、为庆祝党的百年华诞,我校即将举办“学党史·颂党思”的主题活动学校拟定了A党史知识比赛;B视频征集比赛;C歌曲合唱比赛;D诗歌创作比赛四种活动方案,为了解学生对活动方案的喜爱情况,学校随机抽取了名学生进行调查(每人必选且只能选择一种方案),将调查结果绘制成如下两幅不完整的统计图根据以上信息,解答下列问题(1)在扇形统计图中,的值是 ;并将条形统计图补充完整;(2)根据本次调查结果,估计全校名学生中选择方案的学生大约有多少人?(3)若从被调查的学生中任意采访一名学生甲,发现他选择的是方案C,那么再采访另一名学生乙时,他的选择也是方案C的概率是多少?2、桌上倒扣着背面图案相同的5张扑克牌,其中3张黑桃、2张红桃从中随机抽取1张(1)能够事先确定抽取的扑克牌的花色吗?(2)你认为抽到哪种花色的可能性大?(3)能否通过改变某种花色的扑克牌的数量,使“抽到黑桃”和“抽到红桃”的可能性大小相同?3、一个不透明的口袋中放着若干个红球和黑球,这两种球除了颜色之外没有其他任何区别,袋中的球已经搅匀,闭眼从口袋中摸出一个球,经过很多次实验发现摸到红球的频率逐渐稳定在(1)估计摸到黑球的概率是 ;(2)如果袋中原有红球12个,又放入n个黑球,再经过很多次实验发现摸到黑球的频率逐渐稳定在,求n的值4、某校数学兴趣小组成员小华对本班上学期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成频数分布直方图和频数、频率分布表,请你根据图表提供的信息,解答下列问题:分组49.559.559.569.569.579.579.589.589.5100.5合计频数22016450频率0.040.160.40.321(1)频数、频率分布表中_,_;(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是_5、一个不透明的口袋中放有290个涂有红、黑、白三种颜色的质地相同的球已知红球的个数比黑球的2倍多40个,从袋中任取一个球是黑球的概率是(1)袋中红球的个数是_个;(2)求从袋中任取一个球是白球的概率-参考答案-一、单选题1、B【详解】解:“翻开九年级上册数学书,恰好翻到第100页”,这个事件是随机事件,故选:B【点睛】本题考查了随机事件,熟记随机事件的定义(在一定条件下,可能发生也可能不发生的事件称为随机事件)是解题关键2、D【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数即可求解【详解】解:口袋中有2个红球,3个白球,P(红球)故选D【点睛】本题考查了随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A),掌握随机事件概率的求法是解题关键3、A【分析】根据概率公式直接计算即可,总共6个面,点数为2的一面出现的情况只有1种, 可得点数为2的一面朝上的概率【详解】根据题意,小李同学掷一枚质地均匀的骰子,点数为2的一面朝上的概率为故选A【点睛】本题考查了简单概率,理解题意是解题的关键4、A【分析】根据事件发生的可能性大小判断相应事件的类型【详解】解:A、通常,水加热到100会沸腾是必然事件,故本选项符合题意;B、扔一枚硬币,结果正面朝上是随机事件,故本选项不符合题意;C、在只装了红球的袋子中摸到白球是不可能事件,故本选项不符合题意;D、掷一枚质地均匀的正方体骰子,向上的一面点数是6是随机事件,故本选项不符合题意;故选:A【点睛】本题考查的是必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件5、A【分析】让骰子里小于2的数的个数除以数的总数即为所求的概率【详解】解:掷一枚均匀的骰子时,有6种情况,即1、2、3、4、5、6,出现小于2的点即1点的只有一种,故其概率是故选:A【点睛】本题考查了概率公式的应用,解题的关键是注意概率所求情况数与总情况数之比6、A【分析】根据必然事件、随机事件、不可能事件的定义逐项判断即可得【详解】解:A、“正数大于负数”是必然事件,此项符合题意;B、“下周二,温州的天气是阴天”是随机事件,此项不符题意;C、“在一个只装有白球的袋子中摸出一个红球”是不可能事件,此项不符题意;D、“在一张纸上任意画两条线段,这两条线段相交”是随机事件,此项不符题意;故选:A【点睛】本题考查了必然事件、随机事件、不可能事件,熟练掌握各定义是解题关键7、D【分析】用出现偶数朝上的结果数除以所有等可能的结果数即可得【详解】解:掷小正方体后共有6种等可能结果,其中朝上一面的数字出现偶数的有2、4、6这3种可能,朝上一面的数字出现偶数的概率是,故选:D【点睛】本题考查了概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数8、C【分析】根据必然事件的定义:在一定条件下一定会发生的事件,进行逐一判断即可【详解】解:A、随机买一张电影票,座位号可以是奇数也可以是偶数,不是必然事件,故此选项不符合题意;B、打开电视机,可以正在播放也可以不在播放新闻联播,不是必然事件,故此选项不符合题意;C、任意画一个三角形,其外角和是360°,是必然事件,故此选项符合题意;D、掷一枚质地均匀的硬币,可以正面朝上也可以反面朝上,不是必然事件,故此选项不符合题意;故选C【点睛】本题主要考查了必然事件,解题的关键在于能够熟练掌握必然事件的定义9、C【分析】根据随机事件,必然事件和不可能事件的定义,逐项即可判断【详解】A、铁杵成针,一定能达到,是必然事件,故选项不符合;B、水滴石穿, 一定能达到,是必然事件,故选项不符合;C、水中捞月,一定不能达到,是不可能事件,故选项符合;D、百步穿杨,不一定能达到,是随机事件,故选项不符合;故选:C【点睛】本题考查了随机事件,必然事件,不可能事件,解决本题的关键是正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件10、D【分析】根据概率的定义:概率表示事件发生可能性的大小,据此判断即可得【详解】解:明天是晴天的概率为90%,说明明天是晴天的可能性很大,故选:D【点睛】题目主要考查概率的定义及对其的理解,深刻理解概率表示事件发生可能性的大小是解题关键二、填空题1、【分析】直接利用概率公式计算即可【详解】共有球个,其中红球有6个,从中任意摸出一个球,恰好是红球的概率是故答案为:【点睛】本题考查简单的概率计算掌握概率公式是解答本题的关键2、【分析】结合题意,首先分析3的倍数的数量,再根据概率公式的性质计算,即可得到答案【详解】根据题意,3的倍数有:3,6,9,共3个数摸出的球的标号是3的倍数的概率是:,即顾客得奖概率是:故答案为:【点睛】本题考查了概率的知识;解题的关键是熟练掌握概率公式,从而完成求解3、【解析】4、【分析】指针落在白色区域内的可能性是:白色÷总面积,比较白色部分的面积即可【详解】解:指针落在白色区域内的可能性分别为:, 从小到大的顺序为:【点睛】此题主要考查了可能性大小的比较:只要总情况数目(面积)相同,谁包含的情况数目(面积)多,谁的可能性就大;反之也成立;若包含的情况(面积)相当,那么它们的可能性就相等5、【分析】从袋中随机摸出一个球共有8种等可能的结果,其中摸到黄球有3种结果,再利用概率公式即可得【详解】解:由题意,从袋中随机摸出一个球共有种等可能的结果,其中摸到黄球有3种结果,则如果从中随机摸出一个,那么摸到黄球的可能性大小是,故答案为:【点睛】本题考查了简单事件的概率计算,熟练掌握概率公式是解题关键三、解答题1、(1)30%,统计图见解析;(2)200人;(3)【分析】(1)根据扇形统计图可得方案的学生所占百分比,乘以总人数数可得方案人数,进而根据条形统计图可得方案学生的人数,即可求得的值,据此补全统计图即可;(2)根据方案所占样本的百分比乘以2000即可求得全校选择方案的学生大约有多少人;(3)根据选择方案的人数除以总人数可得每一个人选择方案的概率,即可求得乙选择方案的概率【详解】(1)由扇形统计图得方案的学生所占百分比为,总人数为200,方案人数(人),则方案学生的人数为(人),补全统计图如图,故答案为30,补充图如上.(2)选择方案的学生有20人,占总人数的,全校名学生中选择方案的学生大约有人;(3)每一个人选择方案的概率为,则乙选择也是方案C的概率为【点睛】本题主要考查了条形统计图和扇形统计图的综合运用,概率的计算,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小2、(1)不能;(2)抽到黑桃的可能性大;(3)增加一张红桃或减少一张黑桃,使黑桃与红桃张数相同,可使可能性大小相同【分析】根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件【详解】(1)不能 (2)抽到黑桃的可能性大 (3)增加一张红桃或减少一张黑桃,使黑桃与红桃张数相同,可使可能性大小相同【点睛】本题考查了随机事件相关概念,判断事件发生的可能性大小是解题的关键3、(1);(2)n6【分析】(1)取出黑球的概率1取出红球的概率;(2)首先根据红球的个数和摸出红球的概率求得黑球的个数,然后根据概率公式列式求解即可【详解】解:(1)P(取出黑球)1P(取出红球)1;故答案为:;(2)设袋子中原有黑球x个,根据题意得:,解得:x18,经检验x18是原方程的根,所以黑球有18个,又放入了n个黑球,根据题意得:,解得:n6经检验:符合题意【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势,估计概率,这个固定的近似值就是这个事件的概率4、(1),;(2)补全频数分布直方图见解析;(3)【分析】(1)利用频数=频率×总数可得的值,利用频率=频数÷总数可得的值;(2)由(1)的结论中,补全频数分布直方图;(3)根据频率分布表可得信息90分以上的同学有4人,根据概率的公式即可得答案;【详解】(1);故答案为:,;(2)由(1),补全频数分布直方图如图:(3)根据频率分布表可得信息90分以上的同学有4人,小华被选上的概率是故答案为:【点睛】本题考查了频数分布表和频数分布直方图的综合,概率的简单计算,解答此类题目,要善于发现二者之间的关联点,用频数分布表中某部分的频数除以它的频率求出样本容量,进而求解其它未知的量5、(1)200;(2)【分析】(1)直接根据从袋中任取一个球是黑球的概率是,得出黑球的个数,进而利用红球的个数比黑球的2倍多40个,求出答案;(2)利用白球个数除以总数得出答案【详解】一个不透明的口袋中放有290个涂有红、黑、白三种颜色的质地相同的球,从袋中任取一个球是黑球的概率是,黑球的个数为:(个),已知红球的个数比黑球的2倍多40个,故答案为:(2)白球的个数是从袋中任取一个球是白球的概率为【点睛】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键