2022年最新精品解析北师大版七年级数学下册第五章生活中的轴对称必考点解析试题(含答案解析).docx
-
资源ID:28158979
资源大小:565.73KB
全文页数:21页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年最新精品解析北师大版七年级数学下册第五章生活中的轴对称必考点解析试题(含答案解析).docx
七年级数学下册第五章生活中的轴对称必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形不是轴对称图形的是( )ABCD2、在“回收”、“节水”、“绿色食品”、“低碳”四个标志图案中轴对称图形是( )ABCD3、在平面直角坐标系中,点P(2,3)关于x轴对称的点是()A(2,3)B(2,3)C(3,2)D(2,3)4、下面四个图形中,是轴对称图形的是()ABCD5、下列图案中是轴对称图形的是( )ABCD6、下列在线学习平台的图标中,是轴对称图形的是()ABCD7、自新冠肺炎疫情发生以来,莆田市积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图是()A有症状早就医B打喷捂口鼻C防控疫情我们在一起D勤洗手勤通风8、下列四个图标中,是轴对称图形的是( )ABCD9、下列说法正确的是()A如果两个三角形全等,则它们必是关于某条直线成轴对称的图形B如果两个三角形关于某条直线成轴对称,那么它们是全等三角形C等腰三角形是关于一条边上的中线成轴对称的图形D一条线段是关于经过该线段中点的直线成轴对称图形10、如图1,有一张长、宽分别为12和8的长方形纸片,将它对折后再对折,得到图2,然后沿图2中的虚线剪开,得到两部分,其中一部分展开后的平面图形(图3)可以是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AC平分DCB,CBCD,DA的延长线交BC于点E,若DAC125°,则BAE的度数为 _2、如图,在长方形ABCD中,ADBC5,ABCD12,AC13,动点M在线段AC上运动(不与端点重合),点M关于边AD,DC的对称点分别为M1,M2,连接M1M2,点D在M1M2上,则在点M的运动过程中,线段M1M2长度的最小值是_3、如图,将沿、翻折,顶点均落在点O处,且与重合于线段,若,则的度数_ 4、已知,如图,点M,N分别是边OA,OB上的定点,点P,Q分别是边OB,OA上的动点,记,当最小时,则_5、梯形(如图)是有由一张长方形纸折叠而成的,这个梯形的面积是(_)三、解答题(5小题,每小题10分,共计50分)1、如图,在锐角AOB的内部有一点P,试在AOB的两边上各取一点M,N,使得PMN的周长最小(保留作图痕迹)2、如图,边长为1的正方形网格中,ABC的三个顶点A、B、C都在格点上(1)画出ABC关于x轴的对称图形DEF(其中点A、B、C的对称点分别是D、E、F),则点D坐标为 (2)在y轴上找一点P,使得PA+PC最短,请画出点P所在的位置,并写出点P的坐标3、如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点三角形ABC(三角形的顶点都在网格格点上)(1)在图中画出ABC关于直线l对称的ABC(要求:点A与点A、点B与点B、点C与点C相对应);(2)在(1)的结果下,设AB交直线l于点D,连接AB,求四边形ABCD的面积4、如图,在RtABC中,C90°,AD平分BAC交BC边于点D(1)请通过尺规作出一个点E,连接DE,使ADE与ADC关于AD对称;(保留痕迹,不写作法)(2)在(1)的条件下,若DE,EB,DB的长度是三个从小到大的连续正整数,求AD的长5、如图,将一张长方形纸片按如图方式折叠,猜想折痕EF,EG的位置关系,并说明理由-参考答案-一、单选题1、B【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可【详解】选项A、C、D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,选项B不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,故选:B【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴位置2、C【详解】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不合题意故选:C【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键3、A【分析】根据关于x轴对称的两点坐标关系:横坐标相等,纵坐标互为相反数,即可得出结论【详解】解:点P(2,3)关于x轴对称的点的坐标为(2,3)故选A【点睛】本题考查的是求一个点关于x轴对称点的坐标,掌握关于x轴对称的两点坐标关系是解题的关键4、D【分析】根据轴对称图形的定义判断即可【详解】不是轴对称图形,A不符合题意;不是轴对称图形,B不符合题意;不是轴对称图形,C不符合题意;是轴对称图形,D符合题意;故选D【点睛】本题考查了轴对称图形即沿直线折叠,直线两旁的部分能够完全重合的图形,熟记定义是解题的关键5、B【分析】根据轴对称图形的概念(如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)逐一判断即可【详解】A不是轴对称图形,故该选项错误;B是轴对称图形,故该选项正确;C不是轴对称图形,故该选项错误;D不是轴对称图形,故该选项错误故选:B【点睛】本题主要考查轴对称图形,掌握轴对称图形的概念是解题的关键6、B【分析】根据轴对称图形定义进行分析即可如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:选项A,C,D都不能找到这样的一条直线,使这些图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;选项B能找到这样的一条直线,使这个图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形故选:B【点睛】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合7、C【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行解答即可【详解】解:A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、是轴对称图形,故C符合题意;D、不是轴对称图形,故D不符合题意故选C.【点睛】本题主要考查了轴对称图形,正确掌握轴对称图形的性质是解题关键8、C【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行求解即可【详解】解:A、不是轴对称图形,故不符合题意;B、不是轴对称图形,故不符合题意;C、是轴对称图形,故符合题意;D、不是轴对称图形,故不符合题意;故选C【点睛】本题主要考查了轴对称图形的识别,解题的关键在于能够熟知轴对称图形的定义9、B【分析】根据全等三角形的定义以及轴对称的性质可判断选项A和B;根据等腰三角形的性质可判断选项C;根据线段的性质可判断选项D【详解】解:A如果两个三角形全等,则它们不一定关于某条直线成轴对称的图形,故本选项不合题意;B如果两个三角形关于某条直线成轴对称,那么它们是全等三角形,说法正确,故本选项符合题意;C等腰三角形是以底边中线所在直线为对称轴的轴对称图形或者说等腰三角形被中线所在直线分成的两个三角形成轴对称,故本选项不合题意;D一条线段是关于经过该线段中点且和线段垂直的直线成轴对称的图形,故本选项不合题意;故选:B【点睛】本题考查了轴对称的性质,全等三角形的性质,线段垂直平分线的性质,等腰三角形的性质,关键是掌握性质进行逐一判断10、B【分析】由剪去的三角形与展开后的平面图形中的三角形是全等三角形,观察形成的图案是否符合要求判断即可【详解】解:图3中,图不符合题意,图中的4个三角形与图2中剪去的三角形不全等故符合题意,故选:B【点睛】本题考查的是轴对称的性质,全等三角形的性质,动手实践是解此类题的关键.二、填空题1、70°【分析】先根据角平分线的定义得到DCA=BCA,即可利用SAS证明DCABCA得到BAC=DAC=125°,由CAE=180°-DAC=55°,则BAE=BAC-CAE=70°【详解】解:AC平分DCB,DCA=BCA,又CB=CD,CA=CA,DCABCA(SAS),BAC=DAC=125°,CAE=180°-DAC=55°,BAE=BAC-CAE=70°,故答案为:70°【点睛】本题主要考查了全等三角形的性质与判定,角平分线的定义,解题的关键在于能够熟练掌握全等三角形的性质与判定条件2、【分析】过D作于,连接,根据题意可得,从而可以判定M1M2最小值为,即可求解【详解】解:过D作于,连接,如图:长方形ABCD中,ADBC5,ABCD12,AC13,M关于边AD,DC的对称点分别为M1,M2,DM1DMDM2,线段M1M2长度最小即是DM长度最小,此时DMAC,即M与重合,M1M2最小值为故答案为:【点睛】此题考查了轴对称的性质,掌握轴对称的有关性质将的最小值转化为的最小值是解题的关键3、47°【分析】由翻折的性质可得ADOE,BEOF,可得DOFAB,由三角形内角和定理可得AB180°C,即可求C的度数【详解】解:将ABC沿DE,EF翻折,顶点A,B均落在点O处,ADOE,BEOF,DOFABABC180°AB180°CDOFCCDOCOF180°CC86°180°CC47°故答案为:47°【点睛】本题考查了翻折的性质,三角形内角和定理,熟练运用三角形内角和定理是本题的关键4、60°度【分析】作M关于OB的对称点M,N关于OA的对称点N,连接MN交OA于Q,交OB于P,则MP+PQ+QN最小易知OPMOPMNPQ,OQPAQNAQN,根据三角形的外角的性质和平角的定义即可得到结论【详解】解:如图,作M关于OB的对称点M,N关于OA的对称点N,连接MN交OA于Q,交OB于P,则MP+PQ+QN最小,OPMOPMNPQ,OQPAQNAQN,QPN(180°)AOB+MQP30°+ (180°),180°60°+(180°),60°,故答案为:60【点睛】本题考查轴对称最短路线问题、三角形的内角和定理三角形的外角的性质等知识,解题的关键是灵活运用轴对称知识作出辅助线解决问题5、69【分析】通过观察图形可知,这个梯形上底是9cm,下底是(9+5)cm,高是6cm,根据梯形的面积公式:S=(a+b)h÷2,把数据代入公式解答【详解】解:根据折叠可得梯形上底是9cm,下底是(9+5)cm,高是6cm(9+9+5)×6÷2=23×6÷2=138÷2=69()故答案为:69【点睛】此题主要考查梯形面积公式的灵活运用,关键是熟记公式三、解答题1、见详解【分析】作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于M,交OB于N,连接PM,N,PMN即为所求求作三角形【详解】解:如图,作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于M,交OB于N,连接PM,PN,PMN即为所求作三角形理由:由轴对称的性质得MPME,NPNF,PMN的周长PM+MN+PNEM+MN+NFEF,根据两点之间线段最短,可知此时PP1P2的周长最短【点睛】本题考查轴对称最短问题、两点之间线段最短等知识,解题的关键是学会利用对称解决最短问题,属于中考常考题型2、(1)见解析,(4,4);(2)见解析,(0,2)【分析】(1)先分别作出A、B、C关于x轴的对称点D、E、F,再连接D、E、F三点即可;(2)由上问已知,C点关于y轴的对称点是点,连接A、两点,与y轴的交点即为P点,这时PA+PC最短,求出直线的解析式,即可求出答案【详解】(1)ABC关于x轴的对称图形DEF如图所示:D(4,4);故答案为:(4,4);(2)如图所示:C点关于y轴的对称点是点,连接A、两点,与y轴的交点即为P点,这时PA+PC最短,设直线的解析式为,把,代入得:,解得:,令,则,【点睛】本题考查了轴对称变换,掌握轴对称的坐标点特点是解题关键3、(1)见解析;(2)14【分析】(1)根据轴对称图形的性质画图即可;(2)根据网格结构和割补法进行计算即可求得面积【详解】解:(1)如图,ABC即为所求作的三角形;(2)四边形ABCD的面积为:4×6×3×5×4×1×1×1=247.520.5=14【点睛】本题考查画轴对称图形,熟练掌握轴对称的性质,会利用割补法求解网格中不规则图形的面积是解答的关键4、(1)见解析;(2)【分析】(1)先以A为圆心,AC为半径画圆,交AB于点E,连接DE即可;(2)设EBa,则DEa1,DBa+1,根据勾股定理BD2DE2+EB2,解得a4,设ACx,则AEx,ABx+4,根据勾股定理AC2+BC2AB2,解得x6,在RtACD中,根据勾股定理【详解】解:(1)点E如图所作;(2)DE,EB,DB的长度是三个从小到大的连续正整数,设EBa,则DEa1,DBa+1,ACD与AED关于AD对称,ACDAED,AEDACD90°,在RtDEB中,根据勾股定理BD2DE2+EB2,(a+1)2(a1)2+a2,解得a4,CD=DEa1=3,DBa+1=5BC= DE+DB=8设ACx,则AEx,ABx+4,在RtABC中,根据勾股定理AC2+BC2AB2,x2+82(x+4)2,解得x6,在RtACD中,根据勾股定理【点睛】本题考查了尺规作图,轴对称的性质以及勾股定理,掌握轴对称的性质是解题的关键5、EFEG,理由见解析【分析】由EG、EF为折痕,BEG,AEF,再利用平角的定义可得:BEG+AEF+180°,可证明GEF90°,从而可得结论.【详解】解:EFEG,理由如下:长方形纸片按如图的方式折叠,EG、EF为折痕,BEG,AEF,而BEG+AEF+180°,即GEF90°EFEG【点睛】本题考查的是轴对称的性质,平角的定义,垂直的定义,掌握“利用轴对称想性质得到相等的两个角”是解题的关键.