2022年北师大版八年级数学下册第四章因式分解达标测试试卷(无超纲).docx
-
资源ID:28159740
资源大小:214.51KB
全文页数:16页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年北师大版八年级数学下册第四章因式分解达标测试试卷(无超纲).docx
北师大版八年级数学下册第四章因式分解达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列多项式:(1)a2b2;(2)x2y2;(3)m2n2;(4)b2a2;(5)a64,能用平方差公式分解的因式有( )A2个B3个C4个D5个2、下列各式由左边到右边的变形中,是因式分解的为( )Aa(x+y)ax+ayB10x25x5x(2x1)Cx24x+4(x4)2Dx216+3x(x+4)(x4)+3x3、下列因式分解正确的是( )ABCD4、若一个三角形的三边长为a,b,c,且满足a22abb2acbc 0,则这个三角形是( )A直角三角形B等边三角形C等腰三角形D等腰直角三角形5、已知a+b=2,a-b=3,则等于( )A5B6C1D6、下列多项式能使用平方差公式进行因式分解的是( )ABCD7、若,则的值为( )ABCD8、下列从左到右的变形,是因式分解的是( )A(x4)(x4)x216Bx2x6(x3)(x2)Cx21x(x)Da2bab2ab(ab)9、把分解因式的结果是( )ABCD10、下列多项式中,能用平方差公式分解因式的是( )Aa2-1B-a2-1Ca2+1Da2+a第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、下列因式分解正确的是_(填序号);2、因式分解:_3、因式分解:ax22axa_4、分解因式_5、分解因式:_三、解答题(5小题,每小题10分,共计50分)1、因式分解:2、因式分解:(1)(2)3、已知,求4、(1)若x+1是多项式x3+ax+1的因式,求a的值并将多项式x3+ax+1分解因式(2)若多项式3x4+ax3+bx-34含有因式x+1及x-2,求a+b的值5、分解因式:(1)3a26a+3 (2)(x2+y2)24x2y2-参考答案-一、单选题1、B【分析】平方差公式:,根据平方差公式逐一分析可得答案.【详解】解:a2b2不能用平方差公式分解因式,故(1)不符合题意;x2y2能用平方差公式分解因式,故(2)符合题意;m2n2能用平方差公式分解因式,故(3)符合题意;b2a2不能用平方差公式分解因式,故(4)不符合题意;a64能用平方差公式分解因式,故(5)符合题意;所以能用平方差公式分解的因式有3个,故选B【点睛】本题考查的是利用平方差公式分解因式,掌握“”是解本题的关键.2、B【分析】根据因式分解定义,把一个多项式化为几个整式的积的形式,对各选项进行一一分析即可【详解】解:A. a(x+y)ax+ay,多项式乘法,故选项A不合题意B. 10x25x5x(2x1)是因式分解,故选项B符合题意;C. x24x+4(x2)2因式分解不正确,故选项C不合题意;D. x216+3x(x+4)(x4)+3x,不是因式分解,故选项D不符合题意故选B【点睛】本题考查因式分解,掌握因式分解的定义是解题关键3、B【分析】直接利用提取公因式法以及十字相乘法分解因式,进而判断即可【详解】解:A、,故此选项不合题意;B、,故此选项符合题意;C、,故此选项不合题意;D、,不能分解,故此选项不合题意;故选:B【点睛】本题主要考查了提取公因式法以及十字相乘法分解因式,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止4、C【分析】先用完全平方公式和提取公因式法把等式左边因式分解,得出a,b,c之间的关系判断即可【详解】解:a22abb2acbc 0,即,故选:C【点睛】本题考查了因式分解的应用,解题关键是熟练运用分组分解法把等式左边因式分解,得出三角形边之间的等量关系5、B【分析】根据平方差公式因式分解即可求解【详解】a+b=2,a-b=3,故选B【点睛】本题考查了根据平方差公式因式分解,掌握平方差公式是解题的关键6、B【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断即可求解【详解】解:A、,不能进行因式分解,不符合题意;B、m2+11m2(1+m)(1m),可以使用平方差公式进行因式分解,符合题意;C、,不能使用平方差公式进行因式分解,不符合题意;D、,不能进行因式分解,不符合题意;故选:B【点睛】本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键平方差公式:a2b2(a+b)(ab)7、B【分析】根据算术平方根、偶次方的非负性确定a和b的值,然后代入计算【详解】解:,解得,所以故选:B【点睛】本题考查的是配方法的应用、非负数的性质,灵活运用配方法、掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键8、D【分析】分解因式就是把一个多项式化为几个整式的积的形式,因此,要确定从左到右的变形中是否为因式分解或者分解因式是否正确,逐项进行判断即可【详解】A、结果不是积的形式,因而不是因式分解;B、,因式分解错误,故错误;C、 不是整式,因而不是因式分解;D、满足因式分解的定义且因式分解正确;故选:D【点睛】题目主要考查的是因式分解的概念及方法,熟练掌握理解因式分解的定义及方法是解题关键9、B【分析】先用平方差公式分解因式,在提取公因式即可得出结果【详解】解:a2+2a-b2-2b,=(a2-b2)+(2a-2b),=(a+b)(a-b)+2(a-b),=(a-b)(a+b+2),故选:B【点睛】此题主要考查了提取公因式法和公式法分解因式,正确找出公因式是解题关键10、A【分析】直接利用平方差公式:,分别判断得出答案;【详解】A、a2-1=(a+1) (a-1),正确; B、-a2-1=-( a2+1 ) ,错误; C、 a2+1,不能分解因式,错误; D、 a2+a=a(a+1) ,错误; 故答案为:A【点睛】本题主要考查了公式法分解因式,正确运用平方差公式是解题的关键二、填空题1、【分析】根据因式分解的提公因式法及公式法对各式子计算即可得【详解】解:,正确;,计算错误;,计算错误;,正确;故答案为:【点睛】题目主要考查因式分解的方法:提公因式法和公式法,熟练掌握两种方法是解题关键2、【分析】先提公因式,再利用完全平方公式分解即可【详解】解:=故答案为:【点睛】本题考查了提公因式法和公式法分解因式,解题的关键是掌握完全平方公式3、【分析】提取公因式后,用完全平方公式因式分解即可【详解】原式=故答案为:【点睛】本题考查了因式分解,因式分解是初中数学的重要内容之一选择正确的分解方法是学好因式分解的关键因式分解的题目多以填空题或选择题的形式考查提公因式法和公式法的综合运用因式分解的基本思路是:一个多项式如有公因式首先提取公因式,然后再用公式法进行因式分解如果剩余的是两项,考虑使用平方差公式,如果剩余的是三项,则考虑使用完全平方公式同时,因式分解要彻底,要分解到不能分解为止因式分解常见技巧:局部不符看整体,整体不符局部,实在不行看变形4、【分析】把原式化为,再利用完全平方公式分解因式即可.【详解】解: 故答案为:【点睛】本题考查的是利用完全平方公式分解因式,掌握“”是解本题的关键.5、【分析】首先提取公因式,再根据平方差公式计算,即可得到答案【详解】故答案为:【点睛】本题考查了因式分解的知识;解题的关键是熟练掌握平方差公式的性质,从而完成求解三、解答题1、【分析】根据题意先提取公因式,进而利用完全平方差公式即可进行因式分解.【详解】解:【点睛】本题考查因式分解,注意掌握因式分解的常见方法有提取公因式法、公式法、十字交叉相乘法、分组分解法等.2、(1);(2)【分析】(1)先提取公因式,再利用完全平方公式因式分解;(2)先利用平方差公式因式分解,再利用完全平方公式因式分解【详解】解:(1)原式=;(2)原式=【点睛】本题考查综合利用提公因式法和公式法因式分解,一般能提取公因式先提取公因式,再看能否用公式法因式分解注意:因式分解一定要彻底3、【分析】将已知等式变形为,再将所求式子变形为,逐步整体代入计算即可【详解】解:,=【点睛】本题考查了代数式求值,解题的关键是熟练利用整体思想4、(1)a=0;(x+1)(x2x+1);(2)31;【分析】(1)先将x=1代入x3+ax+1=0中,得a=0,令x3+1=(x+1)(x2+bx+c),根据等式两边x同次幂的系数相等确定b、c的值,再因式分解多项式;(2)设3x4+ax3+bx34=(x+1)(x2)M,则x=1,x=2是方程3x4+ax3+bx34=0的解,然后解关于a、b的方程组,即可得到答案【详解】解:(1)x+1是多项式x3+ax+1的因式,当x=1时,x3+ax+1=0,1a+1=0,a=0,令x3+1=(x+1)(x2+bx+c),而(x+1)(x2+bx+c)=x3+(b+1)x2+(c+b)x+c,等式两边x同次幂的系数相等,即x3+(b+1)x2+(c+b)x+c=x3+1,解得:,a的值为0,x3+1=(x+1)(x2x+1);(2)设3x4+ax3+bx34=(x+1)(x2)M(其中M为二次整式),x=1,x=2是方程3x4+ax3+bx34=0的解,a+b=8+(39)=31;【点睛】本题考查了分解因式,因式分解的应用,解二元一次方程组,解题的关键是掌握因式分解的方法,从而进行解题5、(1);(2)【分析】(1)先提公因式3,再由完全平方公式进行因式分解;(2)先由完全平方公式去括号,化简再由完全平方公式以及平方差公式进行因式分解即可【详解】(1),;(2),【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键