欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年强化训练北师大版九年级数学下册第三章-圆专题测评试题(无超纲).docx

    • 资源ID:28159903       资源大小:1.05MB        全文页数:31页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年强化训练北师大版九年级数学下册第三章-圆专题测评试题(无超纲).docx

    北师大版九年级数学下册第三章 圆专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法正确的是( )A等弧所对的圆周角相等B平分弦的直径垂直于弦C相等的圆心角所对的弧相等D过弦的中点的直线必过圆心2、某村东西向的废弃小路/两侧分别有一块与l距离都为20 m的宋代碑刻A,B,在小路l上有一座亭子P A,P分别位于B的西北方向和东北方向,如图所示该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小人工湖建成后,亭子P到湖岸的最短距离是( )A20 mB20mC(20 - 20)mD(40 - 20)m3、半径为10的O,圆心在直角坐标系的原点,则点(8,6)与O的位置关系是()A在O上B在O内C在O外D不能确定4、已知O的半径为5,若点P在O内,则OP的长可以是()A4B5C6D75、如图,FA、FB分别与O相切于A、B两点,点C为劣弧AB上一点,过点C的切线分别交FA、FB于D、E两点,若F60°,FDE的周长为12,则O的半径长为()AB2C2D36、小明设计了如图所示的树型图案,它是由4个正方形、8个等边三角形和5个扇形组成,其中正方形的边长、等边三角形的边长和扇形的半径均为3,则图中扇形的弧长总和为()A8BCD127、如图,ABC内接于圆,弦BD交AC于点P,连接AD下列角中,所对圆周角的是( )AAPBBABDCACBDBAC8、如图,在Rt中,以点为圆心,长为半径的圆交于点,则的长是( )A1BCD29、如图,在中,连接AC,CD,则AC与CD的关系是( )ABCD无法比较10、如图,PA,PB是O的切线,A,B是切点,点C为O上一点,若ACB70°,则P的度数为( ) A70°B50°C20°D40°第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在边长为2的正方形ABCD 中,E,F分别是边DC,CB上的动点,且始终满足DECF,AE,DF交于点 P,则APD的度数为_ ;连接CP,线段CP长的最小值为_2、已知圆锥的底面半径为7cm,它的侧面积是35cm,则这个圆锥的母线长为_3、如图,点A(2,0),B(0,2),将扇形AOB沿x轴正方向做无滑动的滚动,在滚动过程中点O的对应点依次记为点O1,点O2,点O3,则O10的坐标是_4、16.如图,平行四边形ABCD中,ACB = 30°,AC的垂直平分线分别交AC,BC,AD于点O,E,F,点P在OF上,连接AE,PA,PB.若PA = PB,现有以下结论:PAB为等边三角形;PEBAPF;PBC - PAC = 30°;EA = EB + EP其中一定正确的是_(写出所有正确结论的序号) 5、如图,点D为边长是的等边ABC边AB左侧一动点,不与点A,B重合的动点D在运动过程中始终保持ADB120°不变,则四边形ADBC的面积S的最大值是 _三、解答题(5小题,每小题10分,共计50分)1、如图,是的直径,弦,是的中点,连接并延长到点,使,连接交于点,连接,(1)求证:直线是的切线;(2)若长为,求的半径及的长2、已知AB是O的直径,点C在O上,D为弧BC的中点(1)如图,连接AC,AD,OD,求证:ODAC;(2)如图,过点D作DEAB交O于点E,直径EF交AC于点G,若G为AC的中点,O的半径为2,求AC的长3、如图,已知正方形 ABCD 的边长为4,以点 A 为圆心,1为半径作圆,点 E 是A 上的一动点,点 E 绕点 D 按逆时针方向转转 90°,得到点 F,接 AF(1)求CF长;(2)当A、E、F三点共线时,求EF长;(3) AF的最大值是_4、如图,ABC内接于O,高AD经过圆心O(1)求证:;(2)若,O的半径为5,求ABC的面积 5、ABC中,BCAC5,AB8,CD为AB边上的高,如图1,A在原点处,点B在y轴正半轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动ABC在平面上滑动如图2,设运动时间表为t秒,当B到达原点时停止运动(1)当t0时,求点C的坐标;(2)当t4时,求OD的长及BAO的大小;(3)求从t0到t4这一时段点D运动路线的长;(4)当以点C为圆心,CA为半径的圆与坐标轴相切时,求t的值-参考答案-一、单选题1、A【分析】根据圆周角定理,垂径定理的推论,圆心角、弧、弦的关系,对称轴的定义逐项排查即可【详解】解:A. 同弧或等弧所对的圆周角相等,所以A选项正确;B.平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,所以B选项错误;C、在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦相等,所以C选项错误;D.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,所以D选项错误.故选A.【点睛】本题主要考查了圆心角、弧、弦的关系,轴对称图形,垂径定理,圆周角定理等知识点灵活运用相关知识成为解答本题的关键2、D【分析】根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可【详解】人工湖面积尽量小,圆以AB为直径构造,设圆心为O,过点B作BC ,垂足为C,A,P分别位于B的西北方向和东北方向,ABC=PBC=BOC=BPC=45°,OC=CB=CP=20,OP=40,OB=,最小的距离PE=PO-OE=40 - 20(m),故选D【点睛】本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键3、A【分析】先根据两点之间的距离公式可得点(8,6)到原点的距离为10,再根据点与圆的位置关系即可得【详解】解:由两点距离公式可得点(8,6)到原点的距离为,又的半径为10,点(8,6)到圆心的距离等于半径,点(8,6)在上,故选A【点睛】本题考查了两点之间的距离公式、点与圆的位置关系,熟练掌握点与圆的位置关系是解题关键4、A【分析】根据点与圆的位置关系可得,由此即可得出答案【详解】解:的半径为5,点在内,观察四个选项可知,只有选项A符合,故选:A【点睛】本题考查了点与圆的位置关系,熟练掌握点与圆的位置关系(圆内、圆上、圆外)是解题关键5、C【分析】根据切线长定理可得,、,再根据F60°,可知为等边三角形,再FDE的周长为12,可得,求得,再作,即可求解【详解】解:FA、FB分别与O相切于A、B两点,过点C的切线分别交FA、FB于D、E两点,则:、,F60°,为等边三角形,FDE的周长为12,即,即,作,如下图:则,设,则,由勾股定理可得:,解得,故选C【点睛】此题考查了圆的有关性质,切线的性质、切线长定理,垂径定理以及等边三角形的判定与性质,解题的关键是灵活运用相关性质进行求解6、C【分析】如图(见解析),先分别求出扇形、和的圆心角的度数,再利用弧长公式即可得【详解】解:如图,扇形、和的圆心角的度数均为,扇形和的圆心角的度数均为,则图中扇形的弧长总和,故选:C【点睛】本题考查了求弧长,熟记弧长公式(,其中为弧长,为圆心角的度数,为扇形的半径)是解题关键7、C【分析】根据题意可直接进行求解【详解】解:由图可知:所对圆周角的是ACB或ADB,故选C【点睛】本题主要考查圆周角的定义,熟练掌握圆周角是解题的关键8、B【分析】利用三角函数及勾股定理求出BC、AB,连接CD,过点C作CEAB于E,利用,求出BE,根据垂径定理求出BD即可得到答案【详解】解: 在Rt中,BC=3,连接CD,过点C作CEAB于E, 解得,CB=CD,CEAB,故选:B【点睛】此题考查了锐角三角函数,勾股定理,垂径定理,熟记各定理并熟练应用是解题的关键9、B【分析】连接AB,BC,根据得,再根据三角形三边关系可得结论【详解】解:连接AB,BC,如图,又 故选:B【点睛】本题考查了三角形三边关系,弧、弦的关系等知识,熟练掌握上述知识是解答本题的关键10、D【分析】首先连接OA,OB,由PA,PB为O的切线,根据切线的性质,即可得OAP=OBP=90°,又由圆周角定理,可求得AOB的度数,继而可求得答案【详解】解:连接OA,OB,PA,PB为O的切线,OAP=OBP=90°,ACB=70°,AOB=2P=140°,P=360°-OAP-OBP-AOB=40°故选:D【点睛】此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用二、填空题1、 【分析】利用“边角边”证明ADE和DCF全等,根据全等三角形对应角相等可得DAECDF,然后求出APD90°,从而得出点P的路径是一段以AD为直径的弧,连接AD的中点和C的连线交弧于点P,此时CP的长度最小,然后根据勾股定理求得QC,即可求得CP的长【详解】解:四边形ABCD 是正方形, ADCD,ADEBCD90°,在ADE和DCF中,ADEDCF(SAS)DAECDF,CDFADFADC90°,ADFDAE90°,APD90°,由于点P在运动中保持APD90°,点P的路径是一段以AD为直径的弧,取AD的中点Q,连接QC,此时CP的长度最小,则DQAD×21,在RtCQD中,根据勾股定理得,CQ,所以,CPCOQP1故答案为:;1【点睛】本题考查了正方形的性质,勾股定理,圆周角定理,全等三角形的性质和判定,能综合运用性质进行推理是解此题的关键2、5cm【分析】根据圆锥的侧面展开图是扇形,圆锥的底面周长是扇形的弧长,母线为扇形的半径,结合扇形的面积公式求解即可【详解】解:圆锥的底面周长为2×7=14,设圆锥母线长为l,则×14·l=35,解得:l=5,故答案为:5cm【点睛】本题考查圆锥的侧面积计算、扇形面积公式,熟练掌握圆锥侧面展开图与扇形之间的关系是解答的关键3、(,2)【分析】先求出的长度,然后分别求出点的坐标为(2,2),点的坐标为(,2),点的坐标为(,0),即可得到观察图形可知,O点坐标变化三次后回到x轴正半轴,每个回到x轴横坐标增加,由此求解即可【详解】解:A(2,0),B(0,2),OA=BA=2,AOB=90°,的长度,将扇形AOB沿x轴正方形做无滑动的滚动,,,点的坐标为(2,2),点的坐标为(,2),点的坐标为(,0),观察图形可知,O点坐标变化三次后回到x轴正半轴,每个回到x轴横坐标增加,10÷3=3余3,点的坐标为(,2),即(,2),故答案为:(,2)【点睛】本题主要考查了点的坐标规律探索,求弧长,解题的关键在于能够根据题意找到规律求解4、【分析】根据等边三角形的性质、垂直平分线的性质逐项进行分析即可【详解】连接PCAC的垂直平分线分别交AC,BC,AD于点O,E,FPA=PC,EFAC,EA=ECPA=PB,PA=PB=PC点A、B、C在以P为圆心的圆上PAB为等边三角形;故正确;ACB = 30°,EFAC,EA=ECPAB为等边三角形,故错误;平行四边形ABCD中ADBC,,AEF为等边三角形,即PBC - PAC = 30°,故正确;AEF、PAB为等边三角形EF=EP+PF=EAEA=EB+EP,故正确;综上,一定正确的是故答案为:【点睛】本题综合考查等边三角形的性质与判定、相似三角形的判定、圆周角定理、平行四边形的性质,解题的关键是根据PA=PB=PC得到点A、B、C在以P为圆心的圆上5、【分析】根据题意作等边三角形的外接圆,当点运动到的中点时,四边形ADBC的面积S的最大值,分别求出两个三角形的面积,相加即可【详解】解:根据题意作等边三角形的外接圆,D在运动过程中始终保持ADB120°不变,在圆上运动,当点运动到的中点时,四边形ADBC的面积S的最大值,过点作的垂线交于点,如图:,在中,解得:,过点作的垂线交于,故答案是:【点睛】本题考查了等边三角形,外接圆、勾股定理、动点问题,解题的关键是,作出图象及掌握圆的相关性质三、解答题1、(1)见解析;(2)的半径为,【分析】(1)如图:连OC,根据、得COAB,进而证明即可得到FBE=COE=90°,即可证明直线是的切线;(2)由设的半径为,则,在RtABF运用勾股定理即可得半径r,然后再求得AB,最后运用等面积法求解即可【详解】(1)如图:连接、,又经过半径的外端点是的切线;(2)设的半径为,则,在中有:只取,即的半径为是的直径、即,AB为直径,ADB=90°,解得【点睛】本题主要考查了切线的判定和性质、全等三角形的判定和性质、勾股定理、圆周角定理等知识点,正确的作出辅助线是解答本题的关键2、(1)证明见解析;(2)【分析】(1)连接,由为的中点,得,则,由等腰三角形的性质得,推出,即可得出结论;(2)由垂径定理得,由平行线的性质得,则是等腰直角三角形,易证是等腰直角三角形,得,再由,即可得出结果【详解】(1)证明:为的中点,;(2)解:为中点,由(1)得:,是等腰直角三角形,是等腰直角三角形,【点睛】本题考查了垂径定理、圆周角定理、等腰三角形的判定与性质、平行线的判定与性质、等腰直角三角形的判定与性质等知识;熟练掌握垂径定理和平行线的判定与性质是解题的关键3、(1)1;(2)或;(3)【分析】(1)连接AE,根据同角的余角相等可得:,利用全等三角形的判定定理可得:,再由其性质即可得解;(2)分两种情况讨论:当点E在正方形内部时,点A、E、F三点共线时,AF与圆C相切;当点E在正方形外部时,点A、三点共线时,与圆C相切;两种情况分别利用勾股定理进行求解即可得;(3)根据题意判断出AF最大时,点C在AF上,根据正方形的性质求出AC,从而得出AF的最大值【详解】解:(1)连接AE,如图所示:,即:,在与中,;(2)如图所示:当点A、E、F三点共线时,AF与圆C相切,则,;如图所示:当点A、三点共线时,与圆C相切,则,;综合可得:当点A、E、F三点共线时,EF长为或;(3)如图所示,点C在线段AF上,AF取得最大值, ,即:AF的最大值是,故答案为:【点睛】题目主要考查正方形的性质,切线及旋转的性质,勾股定理等,理解题意,画出相应辅助图形是解题关键4、(1)见解析;(2)【分析】(1)根据垂径定理可得AD垂直平分BC,即可证明结论;(2)连接OB,根据勾股定理可得,得出,利用三角形面积公式求解即可【详解】证明:(1)在O中, ODBC于D, BD=CD, AD垂直平分BC, AB=AC; (2)连接OB,如图所示:BC=8,由(1)得BD=CD, , , , , ABC的面积:, ABC的面积为32【点睛】题目主要考查垂径定理的应用,垂直平分线的性质,勾股定理等,理解题意,综合运用各个定理性质是解题关键5、(1)(3,4);(2)OD4,BAO60°;(3);(4)或【分析】(1)先由,为边上的高,根据等腰三角形三线合一的性质得出为的中点,则,然后在中运用勾股定理求出,进而得到点的坐标;(2)如图2,当时即,先由为的中点,根据直角三角形斜边上的中线等于斜边的一半得出,则,判定为等边三角形,然后根据等边三角形的性质求出;(3)从到这一时段点运动路线是弧,由,根据弧长的计算公式求解;(4)分两种情况:与轴相切,根据两角对应相等的两三角形相似证明,得出,求出的值;与轴相切,同理,可求出的值【详解】解:(1)如图1,BCAC,CDAB,D为AB的中点,ADAB4在RtCAD中,CD3,点C的坐标为(3,4);(2)如图2,当t4时,AO4,在RtABO中,D为AB的中点,ODAB4,OAODAD4,AOD为等边三角形,BAO60°;(3)如图3,从t0到t4这一时段点D运动路线是弧DD1,其中,ODOD14,又D1OD90°60°30°,;(4)分两种情况:设AOt1时,C与x轴相切,A为切点,如图4CAOA,CAy轴,CADABO又CDAAOB90°,RtCADRtABO,即,解得;设AOt2时,C与y轴相切,B为切点,如图5同理可得,综上可知,当以点C为圆心,CA为半径的圆与坐标轴相切时,t的值为或【点睛】本题考查了圆的综合题,涉及到等腰三角形的性质,勾股定理,直角三角形的性质,等边三角形的判定与性质,弧长的计算,直线与圆相切,切线的性质,相似三角形的判定与性质,综合性较强,有一定难度,其中第(4)问进行分类讨论是解题的关键

    注意事项

    本文(2022年强化训练北师大版九年级数学下册第三章-圆专题测评试题(无超纲).docx)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开