2022年北师大版九年级数学下册第三章-圆难点解析练习题(无超纲).docx
-
资源ID:28159974
资源大小:1.30MB
全文页数:27页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年北师大版九年级数学下册第三章-圆难点解析练习题(无超纲).docx
北师大版九年级数学下册第三章 圆难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若O是ABC的内心,当时,( )A130°B160°C100°D110°2、如图,一块直角三角板的30°角的顶点P落在O上,两边分别交O于A,B两点,连结AO,BO,则AOB的度数是()A30°B60°C80°D90°3、如图,在圆内接五边形中,则的度数为( )ABCD4、如图,在RtABC中,以边上一点为圆心作,恰与边,分别相切于点,则阴影部分的面积为( )ABCD5、在半径为6cm的圆中,的圆心角所对弧的弧长是( )AcmBcmCcmDcm6、计算半径为1,圆心角为的扇形面积为( )ABCD7、如图,ABCD是的内接四边形,则的度数是( )A50°B100°C130°D120°8、下列叙述正确的有( )个.(1)随着的增大而增大;(2)如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;(3)斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;(4)三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;(5)以为三边长度的三角形,不是直角三角形A0B1C2D39、如图,AB是O的直径,CD为弦,CDAB于点E,则下列结论中不成立是( )A弧AC弧ADB弧BC弧BDCCEDEDOEBE10、如图,中,点O是的内心则等于( )A124°B118°C112°D62°第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在O中,ACBD,若AOC120°,则BOD_2、如图,为的外接圆,则直径长为_3、如图,正五边形ABCDE内接于O,作OFBC交O于点F,连接FA,则OFA_°4、如图,在RtABC中,C90°,AC2,BC2以点A为圆心,AC长为半径作弧交AB于点D,再以点B为圆心,BD长为半径作弧交BC于点E,则图中阴影部分的面积为_5、如图,正六边形ABCDEF内接于O,若O的周长为8,则正六边形的边长为_ 三、解答题(5小题,每小题10分,共计50分)1、尝试:如图,中,将绕点A按逆时针方向旋转一定角度得到,点B、C的对应点分别为、,连接、,直接写出图中的一对相似三角形_;拓展:如图,在中,将绕点A按逆时针方向旋转一定角度得到,点B、C的对应点分别为、,连接、,若,求的长;应用:如图,在中,将绕点A按逆时针方向旋转一周,在旋转过程中,当点B的对应点恰好落在的边所在的直线上时,直接写出此时点C的运动路径长2、如图,在ABC中,以AB为直径的O交BC于点D,与CA的延长线交于点E,O的切线DF与AC垂直,垂足为F(1)求证:ABAC(2)若CF2AF,AE4,求O的半径3、如图,在RtABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连接AD已知(1)求证:AD是O的切线(2)若OB2,CAD30°,则的长为 4、在平面直角坐标系xOy中,已知抛物线(1)求抛物线顶点Q的坐标;(用含b的代数式表示)(2)抛物线与x轴只有一个公共点,经过点(0,2)的直线与抛物线交于点A,B,与x轴交于点K判断AOB的形状,并说明理由;已知E(2,0),F(4,0),设AOB的外心为M,当点K在线段EF上时,求点M的纵坐标m的取值范围5、在一块大铁皮上裁剪如图所示圆锥形的烟囱帽,它的底面直径为80cm,母线为50cm,求裁剪的面积-参考答案-一、单选题1、A【分析】由三角形内角和以及内心定义计算即可【详解】又O是ABC的内心OB、OC为角平分线,180°=180°-50°=130°故选:A【点睛】本题考查了三角形内心的定义,与三角形各边都相切的圆叫做三角形的内切圆三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形2、B【分析】延长AO交O于点D,连接BD,根据圆周角定理得出D=P=30°,ABD=90°,由直角三角形的性质可推得AB=BO=AO,然后根据等边三角形的判定与性质可以得解【详解】解:如图,延长AO交O于点D,连接BD,P=30°,D=P=30°,AD是O的直径,ABD=90°,AB=AD=AO=BO,三角形ABO是等边三角形,AOB=60°,故选B【点睛】本题考查圆的综合应用,熟练掌握圆周角定理、圆直径的性质、直角三角形的性质、等边三角形的判定和性质是解题关键3、B【分析】先利用多边的内角和得到,可计算出,然后根据圆内接四边形的性质求出的度数即可.【详解】解:五边形的内角和为,四边形为的内接四边形,.故选:B.【点睛】本题主要考查了多边形的内角和与圆内接四边形的性质,掌握圆内接四边形的性质是解答本题的关键.4、A【分析】连结OC,根据切线长性质DC=AC,OC平分ACD,求出OCD=OCA=30°,利用在RtABC中,AC=ABtanB=3×,在RtAOC中,ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,再求出扇形面积,利用割补法求即可【详解】解:连结OC,以边上一点为圆心作,恰与边,分别相切于点A, ,DC=AC,OC平分ACD,ACD=90°-B=60°,OCD=OCA=30°,在RtABC中,AC=ABtanB=3×,在RtAOC中,ACO=30°,AO=ACtan30°=,OD=OA=1,DC=AC=,DOC=360°-OAC-ACD-ODC=360°-90°-90°-60°=120°,S阴影=故选择A【点睛】本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键5、C【分析】直接根据题意及弧长公式可直接进行求解【详解】解:由题意得:的圆心角所对弧的弧长是;故选C【点睛】本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键6、B【分析】直接根据扇形的面积公式计算即可【详解】故选:B【点睛】本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键7、B【分析】根据圆的内接四边形对角互补求得,进而根据圆周角定理求得【详解】解:ABCD是的内接四边形,故选B【点睛】本题考查了圆内接四边形对角互补,圆周角定理,求得是解题的关键8、D【分析】根据反比例函数的性质,得当或者时,随着的增大而增大;根据直径所对圆周角为直角的性质,得斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;根据垂直平分线的性质,得三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;根据勾股定理逆定理、完全平方公式的性质计算,可判断直角三角形,即可完成求解【详解】当或者时,随着的增大而增大,故(1)不正确;如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;,故(2)正确;圆的直径所对的圆周角为直角斜边为的直角三角形顶点A的轨迹是以中点为圆心,长为直径的圆,故(3)正确;三角形三边的垂直平分线的交点到三角形三个顶点的距离相等,故(4)正确;以为三边长度的三角形,是直角三角形,故(5)错误;故选:D【点睛】本题考查了三角形、垂直平分线、反比例函数、圆、勾股定理逆定理的知识;解题的关键是熟练掌握反比例函数、垂直平分线、圆周角、勾股定理逆定理的性质,从而完成求解9、D【分析】根据垂径定理解答【详解】解:AB是O的直径,CD为弦,CDAB于点E,弧AC弧AD,弧BC弧BD,CEDE,故选:D【点睛】此题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧,熟记定理是解题的关键10、B【分析】根据三角形内心的性质得到OBC=ABC=25°,OCB=ACB=37°,然后根据三角形内角和计算BOC的度数【详解】解:点O是ABC的内心,OB平分ABC,OC平分ACB,OBC=ABC=×50°=25°,OCB=ACB=×74°=37°,BOC=180°-OBC-OCB=180°-25°-37°=118°故选B【点睛】本题考查了三角形的内切圆与内心:三角形的内心就是三角形三个内角角平分线的交点,三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角二、填空题1、【分析】根据圆的性质,可得OA=OB,OC=OD,证明AOCBOD,即可得答案【详解】解:由题意可知:OA=OB,OC=OD,ACBD,AOCBOD,AOC120°,BOD120°,故答案为:120°【点睛】本题考查了圆的性质、三角形全等的判定和性质,做题的关键是证明AOCBOD2、4【分析】连接OA、OB,根据圆周角定理得出AOB=60°,证明AOB为等边三角形,进而求出直径【详解】解:连接OA、OB,AOB=60°,OA=OB,AOB为等边三角形,OA=OB=2,则直径长为4;故答案为4【点睛】本题考查了圆周角的性质和等边三角形的性质与判定,解题关键是连接半径,证明三角形是等边三角形3、36【分析】连接OA,OB,OB交AF于J由正多边形中心角、垂径定理、圆周角定理得出AOB72°,BOF36°,再由等腰三角形的性质得出答案【详解】解:连接OA,OB,OB交AF于J五边形ABCDE是正五边形,OFBC,AOB72°,BOF=AOB36°,AOFAOB +BOF=108°,OAOF,OAFOFA36°故答案为:36【点睛】本题主要考查了园内正多边形中心角度数、垂径定理和圆周角定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧,垂径定理常与勾股定理以及圆周角定理相结合来解题正n边形的每个中心角都等于4、【分析】根据特殊角的三角函数值,求出B和A的度数,再根据三角形的面积公式和扇形的面积公式分别求出ACB和扇形ACD、扇形BDE的面积,最后求出答案即可【详解】解:ACB90°,AC2,BC2,由勾股定理得:AB=4,B30°,A60°,由题意,AC=AD=2,则BD=AB-AD=2,阴影部分的面积SSABCS扇形ACDS扇形BDE,故答案为:【点睛】本题考查根据特殊角的三角函数值求角度,以及扇形面积相关计算问题,掌握特殊角的三角函数值,以及扇形的面积计算公式是解题关键5、4【分析】由周长公式可得O半径为4,再由正多边形的中心角公式可得正六边形ABCDEF中心角为,即可知正六边形ABCDEF为6个边长为4的正三角形组成的,则可求得六边形ABCDEF边长【详解】O的周长为8O半径为4正六边形ABCDEF内接于O正六边形ABCDEF中心角为正六边形ABCDEF为6个边长为4的正三角形组成的正六边形ABCDEF边长为4.故答案为:4【点睛】本题考查了正多边形的中心角公式,正n边形的每个中心角都等于,由中心角为得出正六边形ABCDEF为6个边长为4的正三角形组成的是解题的关键三、解答题1、尝试:;拓展:;应用:点的运动路径长为或或或或【分析】尝试:根据是由ABC旋转得到的,可得到,即可推出,则;拓展:由AC=BC,ACB=90°,可得,同(1)可证,得到,由此求解即可;应用:分点在延长线上时,点在的延长线上时,当点落在边所在直线上时,当点落在边所在直线上时,当点与点重合时,点旋转一周时,五种情况讨论求解即可得到答案【详解】解:尝试:,理由如下:是由ABC旋转得到的,即,;故答案为:;拓展:AC=BC,ACB=90°,同(1)原理可证,;应用:在中,当点落在所在直线上时,有两种情况:若点在延长线上时,如图所示:由旋转的旋转可得:,点C运动的路径即为,;若点在的延长线上时,如图所示,此时点,三点共线,点C运动的路径即为,由旋转的性质可得,旋转角,弧;当点落在边所在直线上时,如图所示,点C运动的路径即为,由旋转的性质可得,弧;当点落在边所在直线上时,如图所示,此时点,三点共线,旋转角为,弧当点与点重合时,点旋转一周,弧当点的对应点恰好落在的边所在直线上时,点的运动路径长为或或或或【点睛】本题主要考查了旋转的性质,求弧长,相似三角形的性质与判定,勾股定理,解题的关键在于能够熟练掌握相似三角形的性质与判定条件,以及弧长公式2、(1)证明见解析;(2)的半径为6【分析】(1)根据圆切线的性质可得,然后根据等腰三角形的等边对等角以及等角对等边可得出结论;(2)根据圆周角定理以及等腰三角形的判定与性质可得结果【详解】解:(1)证明:如图,连接是的切线,(2)如图,连接,则由(1)知,的半径为6【点睛】本题考查了圆切线的性质,圆周角定理,等腰三角形的性质与判定,平行线的判定与性质,熟练掌握相关性质定理是解本题的关键3、(1)见解析;(2)【分析】(1)连接OD,由OD=OB,利用等边对等角得到,再由已知角相等,等量代换得到1=3,求出4为90°,即可得证;(2)首先根据题意得到,进而求出的度数,然后利用扇形的弧长公式求解即可【详解】(1)证明:连接,在中,则为圆的切线;(2)CAD30°,由(1)可得,OB2,【点睛】此题考查了切线的判定与性质,扇形的弧长公式,熟练掌握切线的判定与性质以及扇形的弧长公式是解本题的关键4、(1)(-b,-b2);(2)直角三角形,见解析;94m3【分析】(1)y=x2+bx=(x+b)2-b2,即可求解;(2)求出抛物线的表达式为y=x2,联立y=x2和y=kx+2并整理得:x2-2kx-4=0,证明ADOOEB,即可求解;AOB的外心为M,则点M是AB的中点,MP是梯形BADG的中位线,则m=k2+2,进而求解【详解】解:(1)y=x2+bx=(x+b)2-b2,抛物线的顶点Q坐标为(-b,-b2);(2)抛物线与x轴只有一个公共点,=b2-4××0=0,解得b=0,抛物线的表达式为y=x2,如下图,分别过点A、B作x轴的垂线,垂足分别为D、G,设经过点(0,2)的直线的表达式为y=kx+2,联立y=x2和y=kx+2并整理得:x2-2kx-4=0,则x1+x2=2k,x1x2=-4,y1=x12,y2=x22,则y1y2=x12x22=4=-x1x2,AD=y1,DO=-x1,BE=y2,OE=x2,ADO=BEO=90°,ADOOEB,AOD=OBE,OBG+BOG=90°,BOG+AOD=90°,即AOBO,AOB为直角三角形;过点A作x轴的平行线交EB的延长线于点H,过点M作MN与y轴平行,交AH于N,AOB的外心为M,MNy轴BH,点M是AB的中点,MP是梯形ABGD的中位线,MP=(AD+BG)=(y2+y1),则m=MP=(y1+y2)=(kx1+2+kx2+2)= k(x1+x2)+4=k2+2,令y=kx+2=0,解得x=-,即点K的坐标为(-,0),由题意得:2-4,解得-1k且k0,k2+23,即点M的纵坐标m的取值范围m3【点睛】本题主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系5、2000 【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则利用扇形的面积公式计算出圆锥的侧面积即可【详解】解:根据题意,圆锥的侧面积为:×80×50=2000(cm2)【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长