2022年最新精品解析沪科版九年级数学下册第24章圆难点解析练习题(无超纲).docx
-
资源ID:28160460
资源大小:1.23MB
全文页数:32页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年最新精品解析沪科版九年级数学下册第24章圆难点解析练习题(无超纲).docx
沪科版九年级数学下册第24章圆难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列语句判断正确的是()A等边三角形是轴对称图形,但不是中心对称图形B等边三角形既是轴对称图形,又是中心对称图形C等边三角形是中心对称图形,但不是轴对称图形D等边三角形既不是轴对称图形,也不是中心对称图形2、某村东西向的废弃小路/两侧分别有一块与l距离都为20 m的宋代碑刻A,B,在小路l上有一座亭子P A,P分别位于B的西北方向和东北方向,如图所示该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小人工湖建成后,亭子P到湖岸的最短距离是( )A20 mB20mC(20 - 20)mD(40 - 20)m3、下列图形中,既是中心对称图形又是抽对称图形的是( )ABCD4、下列图案中既是轴对称图形,又是中心对称图形的是( )ABCD5、如图,将OAB绕点O逆时针旋转80°得到OCD,若A的度数为110°,D的度数为40°,则AOD的度数是( )A50°B60°C40°D30°6、如图,在中,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于( )ABCD7、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是( )ABCD8、如图,PA,PB是O的切线,A,B是切点,点C为O上一点,若ACB70°,则P的度数为( ) A70°B50°C20°D40°9、如图,AB是O的直径,弦,则阴影部分图形的面积为( )ABCD10、如图,是的直径,、是上的两点,若,则( )A15°B20°C25°D30°第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将ABC绕点A顺时针旋转得到ADE,若DAE=110°,B=40°,则C的度数为_2、如图,在平面直角坐标系中,一次函数y2x4的图像与x轴、y轴分别交于点A、B,将直线AB绕点B顺时针旋转45°,交x轴于点C,则直线BC的函数表达式为_3、如图,已知正方形ABCD的边长为6,E为CD边上一点,将绕点A旋转至,连接,若,则的长等于_4、如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是_5、如图,PA,PB是的切线,切点分别为A,B若,则AB的长为_三、解答题(5小题,每小题10分,共计50分)1、元元同学在数学课上遇到这样一个问题:如图1,在平面直角坐标系xOy中,OA经过坐标原点O,并与两坐标轴分别交于B、C两点,点B的坐标为,点D在上,且,求OA的半径和圆心A的坐标元元的做法如下,请你帮忙补全解题过程:解:如图2,连接BC作AELOB于E、AFOC于F、(依据是 ),(依据是 ),BC是的直径(依据是 ),A的坐标为( )的半径为 2、如图,ABC内接于O,D是O的直径AB的延长线上一点,DCBOAC过圆心O作BC的平行线交DC的延长线于点E(1)求证:CD是O的切线;(2)若CD4,CE6,求O的半径及tanOCB的值3、如图,正方形ABCD的顶点A、B在x轴的负半轴上,顶点CD在第二象限将正方形ABCD绕点A按顺时针方向旋转,B、C、D的对应点分别为B1、C1、D1,且D1、C1、O三点在一条直线上记点D1的坐标是(m,n),C1的坐标是(p,q)(1)设DAD130°,n2,求证:OD1的长度;(2)若DAD190°,m,n满足m+n4,p2+q225,求p+q的值4、如图1,BC是O的直径,点A,P在O上,且分别位于BC的两侧(点A、P均不与点B、C重合),过点A 作AQAP,交PC 的延长线于点Q,AQ交O于点D,已知AB3,AC4(1)求证:APQABC(2)如图2,当点C为的中点时,求AP的长(3)连结AO,OD,当PAC与AOD的一个内角相等时,求所有满足条件的AP的长5、将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,其中点E与点B,点G与点D分别是对应点,连接BG(1)如图,若点A,E,D第一次在同一直线上,BG与CE交于点H,连接BE求证:BE平分AEC取BC的中点P,连接PH,求证:PHCG若BC2AB2,求BG的长(2)若点A,E,D第二次在同一直线上,BC2AB4,直接写出点D到BG的距离-参考答案-一、单选题1、A【分析】根据等边三角形的对称性判断即可【详解】等边三角形是轴对称图形,但不是中心对称图形,B,C,D都不符合题意;故选:A【点睛】本题考查了等边三角形的对称性,熟练掌握等边三角形的对称性是解题的关键2、D【分析】根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可【详解】人工湖面积尽量小,圆以AB为直径构造,设圆心为O,过点B作BC ,垂足为C,A,P分别位于B的西北方向和东北方向,ABC=PBC=BOC=BPC=45°,OC=CB=CP=20,OP=40,OB=,最小的距离PE=PO-OE=40 - 20(m),故选D【点睛】本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键3、B【详解】解:是轴对称图形,不是中心对称图形,故此选项不符合题意;既是轴对称图形,也是中心对称图形,故此选项符合题意;是轴对称图形,不是中心对称图形,故此选项不符合题意;不是轴对称图形,是中心对称图形,故此选项不符合题意;故选:B【点睛】本题主要考查了中心对称图形和轴对称图形的概念,解题的关键是判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合4、B【分析】根据中心对称图形与轴对称图形的概念逐项分析【详解】解:A. 是轴对称图形,不是中心对称图形,故该选项不正确,不符合题意;B. 既是轴对称图形,又是中心对称图形,故该选项正确,符合题意;C. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;D. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;故选B【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握中心对称图形与轴对称图形的概念是解题的关键5、A【分析】根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.【详解】解: 将OAB绕点O逆时针旋转80°得到OCD, A的度数为110°,D的度数为40°, 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.6、D【分析】连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解【详解】解:连接CD,如图所示:点D是AB的中点,在RtACB中,由勾股定理可得;故选D【点睛】本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键7、C【分析】利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案【详解】解:A、不是中心对称图形,故A错误B、不是中心对称图形,故B错误C、是中心对称图形,故C正确D、不是中心对称图形,故D错误故选:C【点睛】本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键8、D【分析】首先连接OA,OB,由PA,PB为O的切线,根据切线的性质,即可得OAP=OBP=90°,又由圆周角定理,可求得AOB的度数,继而可求得答案【详解】解:连接OA,OB,PA,PB为O的切线,OAP=OBP=90°,ACB=70°,AOB=2P=140°,P=360°-OAP-OBP-AOB=40°故选:D【点睛】此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用9、D【分析】根据垂径定理求得CE=ED=;然后由圆周角定理知COE=60°然后通过解直角三角形求得线段OC,然后证明OCEBDE,得到求出扇形COB面积,即可得出答案【详解】解:设AB与CD交于点E,AB是O的直径,弦CDAB,CD=2,如图,CE=CD=,CEO=DEB=90°,CDB=30°,COB=2CDB=60°,OCE=30°,又,即,在OCE和BDE中,OCEBDE(AAS),阴影部分的面积S=S扇形COB=,故选D【点睛】本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键10、C【分析】根据圆周角定理得到BDC的度数,再根据直径所对圆周角是直角,即可得到结论【详解】解:BOC=130°,BDC=BOC=65°,AB是O的直径,ADB=90°,ADC=90°-65°=25°,故选:C【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键二、填空题1、【分析】先根据旋转的性质求得,再运用三角形内角和定理求解即可【详解】解:将ABC绕点A顺时针旋转得到ADE,DAE=110°,故答案是:30°【点睛】本题主要考查了旋转的性质、三角形内角和定理等知识点,灵活运用旋转的性质是解答本题的关键2、#【分析】先求出点A、B的坐标,过点A作AFAB,交直线BC于点F,过点F作EFx轴,垂足为E,然后由全等三角形的判定和性质,等腰直角三角形的性质,求出点F的坐标,再利用待定系数法,即可求出答案【详解】解:一次函数y2x4的图像与x轴、y轴分别交于点A、B两点,令,则;令,则,点A为(2,0),点B为(0,4),;过点A作AFAB,交直线BC于点F,过点F作EFx轴,垂足为E,如图,ABF是等腰直角三角形,AF=AB,ABOFAE(AAS),AO=FE,BO=AE,点F的坐标为(,);设直线BC为,则,解得:,直线BC的函数表达式为;故答案为:;【点睛】本题考查了一次函数的性质,全等三角形的判定和性质,等腰三角形的判定和性质,以及旋转的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题3、4【分析】在正方形ABCD中,BEDE2,所以在直角三角形ECE中,EC8,CE4,利用勾股定理求得EE的长即可【详解】解:在正方形ABCD中,C90°,由旋转得,BEDE2,EC8,CE4,在直角三角形ECE中,EE4故答案为4【点睛】本题考查了正方形的性质、旋转的性质与勾股定理的知识,正确的利用旋转和正方形的性质得出直角三角形边长并正确的应用勾股定理是解题的关键4、【分析】由勾股定理求得圆锥母线长为,再由圆锥的侧面积公式即可得出圆锥侧面积为【详解】是一个圆锥在某平面上的正投影为等腰三角形ADBC在中有即由圆锥侧面积公式有故答案为:。【点睛】本题考查了计算圆锥的侧面积,若圆锥的底面半径为r,母线长为l,则这个扇形的半径为l,扇形的弧长为,圆锥的侧面积为5、3【分析】由切线长定理和,可得为等边三角形,则【详解】解:连接,如下图:,分别为的切线,为等腰三角形,为等边三角形,故答案为:3【点睛】本题考查了等边三角形的判定和切线长定理,解题的关键是作出相应辅助线三、解答题1、垂径定理,圆周角定理,圆周角定理,(1,),2【分析】根据垂径定理,圆周角定理依次分析解答【详解】解:如图2,连接BC作AEOB于E、AFOC于F、(依据是垂径定理),(依据是圆周角定理),BC是的直径(依据是圆周角定理),A的坐标为(1,),的半径为2,故答案为:垂径定理,圆周角定理,圆周角定理,(1,),2【点睛】此题考查了圆的知识,垂径定理、圆周角定理,熟记各定理知识并综合应用是解题的关键2、(1)见解析(2)3,2【分析】(1)由等腰三角形的性质与已知条件得出,OCA=DCB,由圆周角定理可得ACB=90°,进而得到OCD=90°,即可得出结论;(2)根据平行线分线段成比例定理得到,设BD=2x,则OB=OC=3x,OD=OB+BD=5x,在RtOCD中,根据勾股定理求出x=1,即O的半径为3,由平行线的性质得到OCB=EOC,在RtOCE中,可求得tanEOC=2,即tanOCB=2(1)证明:OAOC,OACOCA,DCBOAC, OCADCB, AB是O的直径,ACB90°,OCA+OCB90°,DCB+OCB90°,即OCD90°,OCDC, OC是O的半径,CD是O的切线;(2)OEBC,CD=4,CE=6,设BD=2x,则OB=OC=3x,OD=OB+BD=5x,OCDC,OCD是直角三角形,在RtOCD中,OC2+CD2=OD2,(3x)2+42=(5x)2,解得,x=1,OC=3x=3,即O的半径为3,BCOE,OCB=EOC,在RtOCE中,tanEOC=,tanOCB=tanEOC=2【点睛】本题考查了圆周角定理、勾股定理、平行线的性质、等腰三角形的性质、切线的判定、三角函数、平行线分线段成比例定理等知识;熟练掌握切线的判定与平行线分线段成比例定理是解题的关键3、(1)4;(2)-1或-7【分析】(1)如图,且三点在一条直线上的情况,连接,过点向作垂线交点为,在直角三角形中,可求的长;(2)如图,过点向作垂线交点为,过点作轴垂线交于点,作交点为;由,知,点G坐标为,得,由知的值,从而得到的值【详解】解:(1)DAD130°且D1、C1、O三点在一条直线上如图所示,连接,过点向作垂线交点为(2)如图过点向作垂线交点为,过点作轴垂线交于点,作交点为,在和中点横坐标可表示为p+q=-7或-1【点睛】本题考查了锐角三角函数值,三角形全等,图形旋转的性质等知识解题的关键与难点是找出线段之间的关系4、(1)见解析;(2)(3)当,时,;当时,【分析】(1)通过证,即可得;(2)先证是等腰直角三角形,求,通过,得,求CQ长,即可求PQ得长,通过,即可得,即可求AP(3)分类讨论, ,三种情况讨论,再通过勾股定理和相似即可求解【详解】证明:(1)AQAPBC是O的直径(2)如图,连接CD,PDBC是O的直径AB3,AC4利用勾股定理得:,即直径为5DP是O的直径,且DP=BC=5点C为的中点CD=PC是等腰直角三角形利用勾股定理得:,则,即:,即:(3)连接AO,OD,OP,CD,OD交AC于点M(已证)OD,OP共线,为O的直径情况一:当时,AP=PC即AP=PC在中,在中,情况二:当时,同情况一:情况三:当时,OA=OD综上所述,当,时,;当时,【点睛】本题考查了圆周角定理,垂径定理,圆的内接四边形的性质,勾股定理,相似三角形的性质和判定等,是圆的综合题。解答此题的关键是,通过圆的性质,找到角与角、边与边之间的关系5、(1)见解析;见解析;(2)【分析】(1)根据旋转的性质得到,求得,根据平行线的性质得到,于是得到结论;如图1,过点作的垂线,根据角平分线的性质得到,求得,根据全等三角形的性质得到,根据三角形的中位线定理即可得到结论;如图2,过点作的垂线,解直角三角形即可得到结论(2)如图3,连接,过作交的延长线于,交的延长线于,根据旋转的性质得到,解直角三角形得到,根据三角形的面积公式即可得到结论(1)解:证明:矩形绕着点按顺时针方向旋转得到矩形,又,平分;证明:如图1,过点作的垂线,平分,即点是中点,又点是中点,;解:如图2,过点作的垂线,;(2)解:如图3,连接,过作交的延长线于,交的延长线于,将矩形绕着点按顺时针方向旋转得到矩形,点,第二次在同一直线上,【点睛】本题考查了旋转的性质,全等三角形的判定和性质,矩形的性质,三角形的中位线定理,勾股定理,解直角三角形,解题的关键是正确地作出辅助线