2022年精品解析京改版八年级数学下册第十五章四边形定向训练练习题(含详解).docx
-
资源ID:28160518
资源大小:841.30KB
全文页数:30页
- 资源格式: DOCX
下载积分:9金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年精品解析京改版八年级数学下册第十五章四边形定向训练练习题(含详解).docx
京改版八年级数学下册第十五章四边形定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在ABCD中,AC=24,BD=38,AB=m,则m的取值范围是( )A24<m<39B14<m<62C7<m<31D7<m<122、平行四边形中,则的度数是( )ABCD3、已知,四边形ABCD的对角线AC和BD相交于点O设有以下条件:ABAD;ACBD;AOCO,BODO;四边形ABCD是矩形;四边形ABCD是菱形;四边形ABCD是正方形那么,下列推理不成立的是()ABCD4、如图,矩形ABCD的对角线AC和BD相交于点O,若AOD120°,AC16,则AB的长为()A16B12C8D45、如图,在长方形ABCD中,AB10cm,点E在线段AD上,且AE6cm,动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,同时点Q在线段BC上以vcm/s的速度由点B向点C运动,当EAP与PBQ全等时,v的值为()A2B4C4或D2或6、下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD7、下列图形既是中心对称图形,又是轴对称图形的是( )ABCD8、如图,在ABC中,点E,F分别是AB,AC的中点已知B55°,则AEF的度数是()A75°B60°C55°D40°9、在锐角ABC中,BAC60°,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:NPMP;AN:ABAM:AC;BN2AN;当ABC60°时,MNBC,一定正确的有( )ABCD10、下列图中,既是轴对称图形又是中心对称图形的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图是中国古代建筑中的一个正六边形的窗户,则它的内角和为 _2、如图,在一张矩形纸片ABCD中,AB30cm,将纸片对折后展开得到折痕EF点P为BC边上任意一点,若将纸片沿着DP折叠,使点C恰好落在线段EF的三等分点上,则BC的长等于_cm3、若一个n边形的每个内角都等于135°,则该n边形的边数是_4、如图,将矩形ABCD折叠,使点C与点A重合,折痕为EF若AF5,BF3,则AC的长为 _5、一个多边形的内角和是它的外角和的两倍,则这个多边形的边数为 _三、解答题(5小题,每小题10分,共计50分)1、(教材呈现)如图是华师版八年级下册数学教材第117页的部分内容结合图,写出完整的证明过程(应用)如图,直线EF分别交矩形ABCD的边AD,BC于点E,F,将矩形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为G,若AB=4,BC=5,则EF的长为 (拓展)如图,直线EF分别交平行四边形ABCD的边AD,BC于点E,F,将平行四边形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为G,若AB=,BC=6,C=45°,则五边形ABFEG的周长为 2、已知:如图,在中,求证:互相平分如图,将矩形纸片ABCD沿对角线AC折叠,使点B落在点E处,AE交CD于点F,且已知AB=8,BC=4(1)判断ACF的形状,并说明理由;(2)求ACF的面积;3、如图1,平面直角坐标系中,直线yx+m交x轴于点A(4,0),交y轴正半轴于点B,直线AC交y轴负半轴于点C,且BCAB(1)求线段AC的长度(2)P为线段AB(不含A,B两点)上一动点如图2,过点P作y轴的平行线交线段AC于点Q,记四边形APOQ的面积为S,点P的横坐标为t,当S时,求t的值M为线段BA延长线上一点,且AMBP,在直线AC上是否存在点N,使得PMN是以PM为直角边的等腰直角三角形?若存在,直接写出点N的坐标;若不存在,请说明理由4、如图,四边形ABCD是平行四边形,E,F是对角线AC的三等分点,连接BE,DF证明BE=DF5、如图,一次函数y= x3的图像分别与x轴、y轴交于点A,B,以线段AB为边在第一象限内作等腰直角三角形ABC,BAC=90°,(1)求过B,C两点的直线的解析式(2)作正方形ABDC,求点D的坐标-参考答案-一、单选题1、C【分析】作出平行四边形,根据平行四边形的性质可得,然后在中,利用三角形三边的关系即可确定m的取值范围【详解】解:如图所示:四边形ABCD为平行四边形,在中,即,故选:C【点睛】题目主要考查平行四边形的性质及三角形三边的关系,熟练掌握平行四边形的性质及三角形三边关系是解题关键2、B【分析】根据平行四边形对角相等,即可求出的度数【详解】解:如图所示,四边形是平行四边形,故:B【点睛】本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质3、C【分析】根据已知条件以及正方形、菱形、矩形、平行四边形的判定条件,对选项进行分析判断即可【详解】解:A、可以说明,一组邻边相等的矩形是正方形,故A正确B、可以说明四边形是平行四边形,再由,一组临边相等的平行四边形是菱形,故B正确C、,只能说明两组邻边分别相等,可能是菱形,但菱形不一定是正方形,故C错误D、可以说明四边形是平行四边形,再由可得:对角线相等的平行四边形为矩形,故D正确故选:C【点睛】本题主要是考查了特殊四边形的判定,熟练掌握各类四边形的判定条件,是解决本题的关键4、C【分析】由题意可得AOBOCODO8,可证ABO是等边三角形,可得AB8【详解】解:四边形ABCD是矩形,AC2AO2CO,BD2BO2DO,ACBD16,OAOB8,AOD120°,AOB60°,AOB是等边三角形,ABAOBO8,故选:C【点睛】本题考查了矩形的性质,等边三角形的性质和判定,熟练掌握矩形的性质是本题的关键5、D【分析】根据题意可知当EAP与PBQ全等时,有两种情况:当EA=PB时,APEBQP,当AP=BP时,AEPBQP,分别按照全等三角形的性质及行程问题的基本数量关系求解即可【详解】解:当EAP与PBQ全等时,有两种情况:当EA=PB时,APEBQP(SAS),AB=10cm,AE=6cm,BP=AE=6cm,AP=4cm,BQ=AP=4cm;动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,点P和点Q的运动时间为:4÷2=2s,v的值为:4÷2=2cm/s;当AP=BP时,AEPBQP(SAS),AB=10cm,AE=6cm,AP=BP=5cm,BQ=AE=6cm,5÷2=2.5s,2.5v=6,v=故选:D【点睛】本题考查矩形的性质及全等三角形的判定与性质等知识点,注意数形结合和分类讨论并熟练掌握相关性质及定理是解题的关键6、B【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意;故选:B【点睛】本题考查了轴对称图形和中心对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键7、D【分析】一个图形绕着某固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,这个固定点叫做对称中心;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据这两个概念逐项判断即可【详解】A、既不是中心对称图形,也不是轴对称图形,故不符合题意;B、是轴对称图形,但不是中心对称图形,故不符合题意;C、是中心对称图形,但不是轴对称图形,故不符合题意;D、既是中心对称图形,也是轴对称图形,故符合题意【点睛】本题考查了中心对称图形与轴对称图形的识别,掌握它们的概念是关键8、C【分析】证EF是ABC的中位线,得EFBC,再由平行线的性质即可求解【详解】解:点E,F分别是AB,AC的中点,EF是ABC的中位线,EFBC,AEF=B=55°,故选:C【点睛】本题考查了三角形中位线定理以及平行线的性质;熟练掌握三角形中位线定理,证出EFBC是解题的关键9、C【分析】利用直角三角形斜边上的中线的性质即可判定正确;利用含30度角的直角三角形的性质即可判定正确,由勾股定理即可判定错误;由等边三角形的判定及性质、三角形中位线定理即可判定正确【详解】CM、BN分别是高CMB、BNC均是直角三角形点P是BC的中点PM、PN分别是两个直角三角形斜边BC上的中线故正确BAC=60ABN=ACM=90BAC=30AB=2AN,AC=2AMAN:AB=AM:AC=1:2即正确在RtABN中,由勾股定理得:故错误当ABC=60时,ABC是等边三角形CMAB,BNACM、N分别是AB、AC的中点MN是ABC的中位线MNBC故正确即正确的结论有故选:C【点睛】本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键10、D【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、不是轴对称图形,也不是中心对称图形故本选项不合题意;B、是轴对称图形,不是中心对称图形故本选项不合题意;C、不是轴对称图形,是中心对称图形故本选项不合题意;D、既是轴对称图形又是中心对称图形故本选项符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合二、填空题1、720°720度【分析】根据多边形内角和可直接进行求解【详解】解:由题意得:该正六边形的内角和为;故答案为720°【点睛】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键2、或【分析】分为将纸片沿纵向对折,和沿横向对折两种情况,利用折叠的性质,以及勾股定理解答即可【详解】如图:当将纸片沿纵向对折根据题意可得:为的三等分点在中有如图:当将纸片沿横向对折根据题意得:,在中有为的三等分点故答案为:或【点睛】本题考查了矩形的性质,折叠的性质,以及勾股定理解直角三角形,解题关键是分两种情况作出折痕,考虑问题应全面,不应丢解3、8【分析】根据题意求得多边形的外角,根据360度除以多边形的外角即可求得n边形的边数【详解】解:一个n边形的每个内角都等于135°,则这个n边形的每个外角等于该n边形的边数是故答案为:【点睛】本题考查了多边形的内角与外角的关系,求得多边形的外角是解题的关键4、【分析】根据矩形的性质得到B90°,根据勾股定理得到,根据折叠的性质得到CFAF5,根据勾股定理即可得到结论【详解】解:四边形ABCD是矩形,B90°,AF5,BF3,将矩形ABCD折叠,使点C与点A重合,折痕为EFCFAF5,BCBF+CF8,故答案为:【点睛】本题主要考查了矩形与折叠问题,勾股定理,解题的关键在于能够熟练掌握折叠的性质5、6【分析】根据内角和等于外角和的2倍则内角和是720°利用多边形内角和公式得到关于边数的方程,解方程就可以求出多边形的边数【详解】解:根据题意,得(n2)180360×2,解得:n6故这个多边形的边数为6故答案为:6【点睛】本题主要考查了多边形的内角和以及外角和,已知多边形的内角和求边数,可以转化为方程的问题来解决三、解答题1、【教材呈现】见解析;【应用】 ;【拓展】【分析】(教材呈现)由“ASA”可证AOECOF,可得OEOF,由对角线互相平分的四边形是平行四边形可证四边形AFCE是平行四边形,即可证平行四边形AFCE是菱形;(应用)过点F作FHAD于H,由折叠的性质可得AFCF,AFEEFC,由勾股定理可求BF、EF的长,(拓展)过点A作ANBC,交CB的延长线于N,过点F作FMAD于M,由等腰直角三角形的性质可求ANBN3,由勾股定理可求AEAF,再利用勾股定理可求EF的长,再求出五边形ABFEG的周长【详解】解:(教材呈现)四边形ABCD是矩形,AECF,EAOFCO,EF垂直平分AC,AOCO,AOECOF90°,AOECOF(ASA)OEOF,又AOCO,四边形AFCE是平行四边形,EFAC,平行四边形AFCE是菱形;(应用)如图,连接AC、EC由(教材呈现)可得平行四边形AFCE是菱形,AFCF,AFEEFC,AF2BF2AB2,(5BF)2BF216,BF,AFCF,ABBC,ABC是直角三角形AC=S四边形AFCE=,EF,故答案为:(拓展)如图,过点A作ANBC,交CB的延长线于N,过点F作FMAD于M,四边形ABCD是平行四边形,C45°,ABC135°,ABN45°,ANBC,ABNBAN45°,ANB是等腰直角三角形AN2+BN2=AB2,ANBNANBN3,NC=6+3=9将ABCD沿EF翻折,使点C的对称点与点A重合,AFCF,AFEEFC,ADBC,AEFEFCAFE,AEAF,AF2AN2NF2,AF29(9AF)2,AF5,AEAF5,ANMF,ADBC,四边形ANFM是平行四边形,ANBC,四边形ANFM是矩形,ANMF3,AM=4,MEAEAM1,EF=,BF=NF-BN=9-AF-BN=1,DE=GE=AD-AE=1五边形ABFEG的周长为AB+BF+EF+GE+AG=AB+BF+EF+CD+DE=+1+1=故答案为:【点睛】本题是四边形综合题,考查了平行四边形的性质,菱形的性质,折叠的性质,全等三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造直角三角形是本题的关键2、证明见解析【分析】连接,由三角形中位线定理可得,可证四边形ADEF是平行四边形,由平行四边形的性质可得AE,DF互相平分;【详解】证明:连接,ADDB,BEEC,BEEC,AFFC,四边形ADEF是平行四边形,AE,DF互相平分【点睛】本题考查了平行四边形的性质判定和性质及三角形中位线定理,灵活运用这些性质是解题的关键(1)ACF是等腰三角形,理由见解析;(2)10;(3)3、(1);(2);存在一点或,使是以MN为直角边的等腰直角三角形【分析】(1)把代入一次函数解析式即可确定一次函数解析式为,得到,由勾股定理确定,求出,即求得,在RtAOC中,利用勾股定理即可得出结果;(2)设,利用待定系数法直线AC的解析式为,由,根据代入数值即可求出t的值;当N点在轴下方时,得到,设,过P点作直线轴,作,根据全等三角形的判定定理可得:,得到,再证明,得到,求得,则,根据,得到,列出方程求出a即可得到点N的坐标;当N点在x轴上方时,点与N关于对称,得到点N的坐标【详解】(1)把代入得:,一次函数解析式为,令,得,在中,在RtAOC中,;(2)设,P在线段AB上,设直线AC的解析式为,代入,得:,又轴,则,又,得如图所示,当N点在轴下方时,是以PM为直角边的等腰直角三角形,当时,设,过P点作直线轴,作,在与中,在与中,作,则,M在直线AB上,当N点在x轴上方时,如图所示:点与关于对称,则,即,综上:存在一点或,使是以MN为直角边的等腰直角三角形【点睛】题目主要是考查一次函数的综合题,待定系数法求函数解析式,直线所成三角形的面积,等腰直角三角形的性质,勾股定理,三角形全等的判定及性质,中心对称的点的性质,熟练掌握各知识点综合运用是解题的关键4、见详解【分析】由题意易得AB=CD,ABCD,AE=CF,则有BAE=DCF,进而问题可求证【详解】证明:四边形ABCD是平行四边形,AB=CD,ABCD,BAE=DCF,E,F是对角线AC的三等分点,AE=CF,在ABE和CDF中,ABECDF(SAS),BE=DF【点睛】本题主要考查平行四边形的性质及全等三角形的性质与判定,熟练掌握平行四边形的性质及全等三角形的性质与判定是解题的关键5、(1),(2)(3,7)【分析】(1)先根据一次函数的解析式求出A、B两点的坐标,再作CEx轴于点E,由全等三角形的判定定理可得出ABOCAE,由全等三角形的性质可知OA=CE,故可得出C点坐标,再用待定系数法即可求出直线BC的解析式;(2)由正方形的性质以及ABOCAE,同理可得ABOBDM,进而可得点D的坐标【详解】(1)一次函数y=-x+3中,令x=0得:y=3,令y=0,解得x=4,B的坐标是(0,3),A的坐标是(4,0),如图,作CEx轴于点E,BAC=90°,OAB+CAE=90°,又CAE+ACE=90°,ACE=BAO在ABO与CAE中, ,ABOCAE(AAS),OB=AE=3,OA=CE=4,OE=OA+AE=7,则点C的坐标是(7,4),设直线BC的解析式是y=kx+b(k0),根据题意得:,解得,直线BC的解析式是y=x+3(2)如图,作DMy轴于点M,四边形ABDC为正方形,由(1)知ABOCAE,同理可得:ABOBDM,DM=OB=3,BM=OA=4,OM=OB+BM=7,则点D的坐标是(3,7)【点睛】本题考查的是一次函数综合题,涉及到用待定系数法求一次函数的解析式、全等三角形的判定与性质,正方形的性质,解题的关键是根据题意作出辅助线,构造出全等三角形