2022年北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组定向测评试卷(含答案详解).docx
-
资源ID:28160611
资源大小:224.04KB
全文页数:18页
- 资源格式: DOCX
下载积分:8金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组定向测评试卷(含答案详解).docx
第二章一元一次不等式和一元一次不等式组定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若mn,则下列各式正确的是()A2m2nBC1m1nDm2n22、下列判断正确的是( )A由,得B由,得C由,得D由,得3、一次函数ykx+b的图象如图所示,则下列说法错误的是()Ay随x的增大而减小Bk0,b0C当x4时,y0D图象向下平移2个单位得yx的图象4、在数轴上表示不等式的解集正确的是( )ABCD5、对于不等式4x+7(x-2)8不是它的解的是( )A5B4C3D26、一次函数y=kx+b(k0)的图象如图所示,当x>2时,y的取值范围是( )Ay<0By>0Cy<3Dy>37、某种商品进价为700元,标价1100元,由于该商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可以打( )折A9B8C7D68、解集如图所示的不等式组为()ABCD9、若x<y成立,则下列不等式成立的是()Ax+2<y+2B4x>4yC3x<3yDx2<y210、不等式2x+4<0的解集是()Ax>Bx>2Cx<2Dx>2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不等式组的解集是 _2、从,0,1,2这六个数字中,随机抽取一个数记为,则使得关于的不等式组只有三个整数解的概率是 _3、全国文明城市创建期间,某校组织开展“垃圾分类”知识竞赛,共有25道题答对一题记4分,答错(或不答)一题记2分小明参加本次竞赛得分要超过60分,他至少要答对 _道题4、如图,函数和的图象相交于,则不等式的解集为_5、满足不等式的最小整数解是_三、解答题(5小题,每小题10分,共计50分)1、解决小明参加某次竞赛,若得分超过100分至少要答对多少道题的问题时,求得x>那么小明得分超过100分,至少要答对_道题2、2021年11月,我市政府紧急组织一批物资送往新冠疫情高风险地区,现已知这批物资中,食品和矿泉水共410箱,且食品比矿泉水多110箱(1)求食品和矿泉水各有多少箱;(2)现计划租用,两种货车共10辆,一次性将所有物资送到群众手中,已知种货车最多可装食品40箱和矿泉水10箱,种货车最多可装食品20箱和矿泉水20箱,试通过计算帮助政府设计几种运输方案;(3)在(2)的条件下,种货车每辆需付运费600元,种货车每辆需付运费450元,政府应该选哪种方案,才能使运费最少?最少运费是多少?3、阳光超市从厂家购进甲、乙两种商品进行销售,若该超市购进甲种商品3件,乙种商品2件,共需花费900元;若购进甲种商品2件,购进乙种商品1件,共需花费500元;(1)求甲、乙两种商品每件的进价分别为多少元;(2)由于甲、乙两种商品受到市民欢迎,十一月份超市决定购进甲、乙两种商品共80件,且保持(1)的进价不变,已知甲种商品每件的售价为150元,乙种商品每件的售价400元,要使十一月份购进的甲、乙两种商品共80件全部销售完的总利润不少于6500元,那么该超市最多购进甲种商品多少件?4、(1)解不等式:3x25x,并把解集在数轴上表示出来(2)解不等式组,并写出它的最大整数解5、关于x的方程的解大于1,求a的取值范围-参考答案-一、单选题1、C【分析】根据不等式的基本性质逐项判断即可【详解】解:A:mn,2m2n,不符合题意;B:mn,不符合题意;C:mn,mn,1m1n,符合题意;D: mn,当时,m2n2,不符合题意;故选:C【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键2、D【分析】根据一元一次不等式的解法逐项判断即可得【详解】解:A、由,得,则此项错误;B、由,得,则此项错误;C、由,得,则此项错误;D、由,得,则此项正确;故选:D【点睛】本题考查了解一元一次不等式,熟练掌握不等式的解法是解题关键3、B【分析】由一次函数的图象的走势结合一次函数与轴交于正半轴,可判断A,B,由图象可得:当x4时,函数图象在轴的下方,可判断C,先求解一次函数的解析式,再利用一次函数图象的平移可判断D,从而可得答案.【详解】解:一次函数ykx+b的图象从左往右下降,所以y随x的增大而减小,故A不符合题意;一次函数ykx+b, y随x的增大而减小,与轴交于正半轴,所以 故B符合题意;由图象可得:当x4时,函数图象在轴的下方,所以y0,故C不符合题意;由函数图象经过 ,解得: 所以一次函数的解析式为: 把向下平移2个单位长度得:,故D不符合题意;故选B【点睛】本题考查的是一次函数的性质,一次函数的平移,利用待定系数法求解一次函数的解析式,掌握“一次函数的图象与性质”是解本题的关键.4、A【分析】根据在数轴上表示不等式的解集的方法进行判断即可【详解】在数轴上表示不等式的解集如下:故选:【点睛】本题考查不等式在数轴上的表示,掌握不等式在数轴上的画法是解题的关键5、D【分析】根据不等式的解的含义把每个选项的数值代入不等式的左边进行计算,满足左边大于右边的是不等式的解,不满足左边大于右边的就不是不等式的解,从而可得答案.【详解】解:当x5时,4x+7(x-2)418,当x4时,4x+7(x-2)308,当x3时,4x+7(x-2)198,当x2时,4x+7(x-2)8故知x2不是原不等式的解故A,B,C不符合题意,D符合题意,故选D【点睛】本题考查的是不等式的解的含义,理解不等式的解的含义并进行判断是解本题的关键.6、A【分析】观察图象得到直线与x轴的交点坐标为(2,0),根据一次函数性质得到y随x的增大而减小,所以当x2时,y0【详解】一次函数y=kx+b(k0)与x轴的交点坐标为(2,0),y随x的增大而减小,当x2时,y0故选:A【点睛】本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k0)的图象为直线,当k0,图象经过第一、三象限,y随x的增大而增大;当k0,图象经过第二、四象限,y随x的增大而减小;直线与x轴的交点坐标为7、C【分析】设打x折,由题意:某种商品进价为700元,标价1100元,商店准备打折销售,但要保证利润率不低于10%,列出一元一次不等式,解不等式即可【详解】设打x折,根据题意得:1100×700700×10%,解得:x7,至多可以打7折故选:C【点睛】本题考查了一元一次不等式的知识;解题的关键是熟练掌握一元一次不等式的性质,从而完成求解8、A【分析】根据图象可得数轴所表示的不等式组的解集,然后依据不等式组解集的确定方法“同大取大,同小取小,小大大小中间找,大大小小无处找”,依次确定各选项的解集进行对比即可【详解】解:根据图象可得,数轴所表示的不等式组的解集为:,A选项解集为:,符合题意;B选项解集为:,不符合题意;C选项解集为:,不符合题意;D选项解集为:,不符合题意;故选:A【点睛】题目主要考查不等式组的解集在数轴上的表示及解集的确定,理解不等式组解集的确定方法是解题关键9、D【分析】不等式的性质1:在不等式的两边都加上或减去同一个数,不等号的方向不变,性质2:在不等式的两边都乘以或除以同一个正数,不等号的方向不变,性质3:在不等式的两边都乘以或除以同一个负数,不等号的方向改变;根据不等式的基本性质逐一判断即可.【详解】解:A、不等式x<y的两边都乘1,不等号的方向改变,即x>y,不等式x>y的两边都加上2,不等号的方向不变,即x+2>y+2,原变形错误,故此选项不符合题意;B、不等式x<y的两边都乘4,不等号的方向不变,即4x<4y,原变形错误,故此选项不符合题意;C、不等式x<y的两边都乘3,不等号的方向改变,即3x>3y,原变形错误,故此选项不符合题意;D、不等式x<y的两边都减去2,不等号的方向不变,即x2<y2,原变形正确,故此选项符合题意;故选:D【点睛】本题考查的是不等式的基本性质,掌握“不等式的基本性质”是解本题的关键.10、D【分析】首先通过移项得到,然后利用不等式性质进一步化简即可得出答案.【详解】解:移项可得:,两边同时除以-2可得:,原不等式的解集为:,故选:D.【点睛】本题主要考查了解一元一次不等式,熟练掌握相关方法是解题关键.二、填空题1、2x3【分析】先标号,分别求出每个不等式的解集,再找到两个不等式解集的公共部分即不等式组的解集即可【详解】解:由得,x2;由得,x3,不等式组的解集为2x3故答案为2x3【点睛】本题考查了解一元一次不等式组,明确不等式组的解法是解题的关键2、【分析】解关于x的不等式组,由不等式组整数解的个数求出a的范围,再从6个数中找到同时满足以上两个条件的情况,从而利用概率公式求解可得【详解】解:解不等式组,得:ax2,不等式组只有3个整数解,不等式组的整数解为2、1、0,则-1a0,即-2a0在所列的六个数字中,同时满足以上两个条件的只有-2,-1,只有三个整数解的概率是故答案为:【点睛】题主要考查的是解一元一次不等式组的解集和概率的知识,解题的关键是熟练掌握解一元一次不等式组的能力及概率公式的应用3、19【分析】设小明答对x道题,则答错(或不答)(25-x)道题,利用总得分=4×答对题目数-2×答错(或不答)题目数,结合小明参加本次竞赛得分要超过60分,即可得出关于x的一元一次不等式,解之取其中的最小整数值即可得出结论【详解】解:设小明答对x道题,则答错(或不答)(25-x)道题,依题意得:4x-2(25-x)60,解得:x又x为正整数,x可以取的最小值为19故答案为:19【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键4、【分析】观察函数图象得到,当时,直线都在直线的下方,于是可得到不等式的解集【详解】解:由图象可知,在点A左侧,直线的函数图像都在直线的函数图像得到下方,即当时,不等式的解集为,故答案为:【点睛】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合5、5【分析】先求出不等式的解集,然后求出满足题意的最小整数解即可【详解】解:解不等式得: ,满足不等式的最小整数解是5,故答案为:5【点睛】本题主要考查了解一元一次不等式和求满足题意的不等式的最小整数解,解题的关键在于能够熟练掌握解不等式的方法三、解答题1、14【分析】求符合条件x的最小整数解即可【详解】x>x最小整数解是14故答案为:14【点睛】本题考查一元一次不等式的整数解,理解题意是解题的关键2、(1)食品有260箱,矿泉水有150箱;(2)共有3种运输方案,方案1:租用种货车3辆,种货车7辆,方案2:租用种货车4辆,种货车6辆,方案3:租用种货车5辆,种货车5辆;(3)政府应该选择方案1,才能使运费最少,最少运费是4950元【分析】(1)设食品有x箱,矿泉水有y箱,根据“品和矿泉水共410箱,且食品比矿泉水多110箱”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设租用A种货车m辆,则租用B种货车(10-m)辆,根据租用的10辆货车可以一次运送这批物质,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各运输方案;(3)根据总运费=每辆车的运费×租车辆数,可分别求出三个运输方案所需总运费,比较后即可得出结论【详解】解:(1)设食品有箱,矿泉水有箱,依题意,得,解得,答:食品有260箱,矿泉水有150箱;(2)设租用种货车辆,则租用种货车辆,依题意,得解得:3m5,又m为正整数,m可以为3,4,5,共有3种运输方案,方案1:租用A种货车3辆,B种货车7辆;方案2:租用A种货车4辆,B种货车6辆;方案3:租用A种货车5辆,B种货车5辆(3)选择方案1所需运费为600×3+450×7=4950(元),选择方案2所需运费为600×4+450×6=5100(元),选择方案3所需运费为600×5+450×5=5250元)495051005250,政府应该选择方案1,才能使运费最少,最少运费是4950元【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)利用总运费=每辆车的运费×租车辆数,分别求出三个运输方案所需总运费3、(1)甲种商品每件进价为100,乙种商品每件进价300元;(2)30件【分析】(1)设甲种商品每件进价为x元,乙种商品每件进价y元,根据等量关系:3件甲种商品的花费+2件乙种商品的花费=900;2件甲种商品的花费+1件乙种商品的花费=500,即可列出方程组,解方程组即可;(2)设该超市购进甲种商品m件,根据不等关系:甲商品的利润+乙商品的利润6500,列出不等式,不等式即可,再取不等式解集中最大的整数值即可【详解】(1)设甲种商品每件进价为x元,乙种商品每件进价y元,根据题意的 解得故甲种商品每件进价为100,乙种商品每件进价300元(2)设该超市购进甲种商品m件,根据题意得:(150100)m(400300)(80m)6500解得m30m为整数m的最大整数值为30即该超市最多购进甲种商品30件【点睛】本题考查了解二元一次方程组及解不等式的应用,关键是理解题意,找到等量关系和不等关系,然后列出方程组和不等式即可解决问题4、(1)x1,数轴见解析;(2),2【分析】(1)根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而即可求解【详解】解:(1)移项,得:3x5x2,合并同类项,得:2x2,系数化为1,得:x1,将不等式的解集表示在数轴上如下:(2)解不等式2(x2)3x,得:x,解不等式,得:x3,则不等式组的解集为3x,其最大整数解为2【点睛】本题主要考查解一元一次不等式以及不等式组,熟练掌握解不等式(组)的基本步骤是解题的关键5、a0【分析】先解方程得出x,根据方程的解大于1得出关于a的不等式,解之即可【详解】解:解不等式6xa42x2a,得x,根据题意,得:1,解得a0【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变