2022年最新人教版九年级数学下册第二十六章-反比例函数定向测评试卷(名师精选).docx
-
资源ID:28160728
资源大小:553.42KB
全文页数:25页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年最新人教版九年级数学下册第二十六章-反比例函数定向测评试卷(名师精选).docx
人教版九年级数学下册第二十六章-反比例函数定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列数表中分别给出了变量与的几组对应值,其中是反比例函数关系的是( )Ax1234y78910Bx1234y36912Cx1234y10.50.25Dx1234y43212、对于反比例函数y,下列说法不正确的是()A这个函数的图象分布在第一、三象限B点(1,4)在这个函数图象上C这个函数的图象既是轴对称图形又是中心对称图形D当x0时,y随x的增大而增大3、已知反比例函数(a为常数)图象上三个点的坐标分别是,其中,则的大小关系的是( )ABCD4、如图,和均为等腰直角三角形,且顶点A、C均在函数的图象上,连结交于点E,连结若,则k的值为( )A B C4D5、下列四个函数图象,一定不过原点的是()AyxByCyx2Dyx26、下列各点中,在函数y图象上的是( )A(2,6)B(3,4)C(2,6)D(3,4)7、正比例函数y2x和反比例函数y都经过的点是()A(0,0)B(1,2)C(2,1)D(2,4)8、电压为定值,电流与电阻成反比例,其函数图象如图所示,则电流I与电阻R之间的函数关系式为( )ABCD9、下列函数,其中y是x的反比例函数的是( )ABCD10、下列说法正确的个数有( )方程的两个实数根的和等于1;半圆是弧;正八边形是中心对称图形;“抛掷3枚质地均匀的硬币全部正面朝上”是随机事件;如果反比例函数的图象经过点,则这个函数图象位于第二、四象限A2个B3个C4个D5个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点A(4,1)为直线ykx(k0)和双曲线y(m0)的一个交点,点B(5,0),如果在直线ykx上有一点P,使得SABP2SABO,那么点P的坐标是 _2、如图,在反比例函数的图象上有点,它们的横坐标依次为2,4,6,8,10,分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为,则的值为_3、如图,若反比例函数与一次函数交于、两点,当时,则的取值范围是_4、如图,反比例函数图像上一点C,过点C作轴,垂足为D,连接OC,那么此反比例函数的表达式为_5、若A(-2,y1),B(-1,y2)是反比例函数图像上的两个点,则y1,y2的大小关系是_三、解答题(5小题,每小题10分,共计50分)1、如图,中,点,点,反比例函数的图象经过点(1)求反比例函数的解析式;(2)将直线向上平移个单位后经过反比例函数的图象上的点,分别求与的值2、如图,点P是反比例函数图象上一动点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A,B两点,交反比例函数(且)的图象于E,F两点,连接(1)四边形的面积 (用含的式子表示);(2)设P点坐标为点E的坐标是( , ),点F的坐标是( , )(用含的式子表示);若的面积为,求反比例函数的解析式3、如图,直线y=kx+b(k0)分别交x轴,y 轴于点A(1,0)、点B(0,-1),交双曲线y=点C、D(1)求k 、b的值; (2)求出两个函数在第一象限的交点C的坐标;4、将油箱注满k L油后,轿车可行驶的总路程S(单位:km)与平均耗油量a(单位:L/km)之间是反比例函数关系(k是常数,k0)已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1 L的速度行驶,可行驶700 km(1)求该轿车可行驶的总路程S与平均耗油量a之间的函数解析式(不要求写出自变量的取值范围);(2)当平均耗油量为0.08 L/km时,该轿车可以行驶多少千米?5、如图,在平面直角坐标系xOy中,一次函数的图象过点,且与函数的图象交于点(1)求一次函数的解析式;(2)若P是x轴上一点,的面积是5,请求出点P的坐标;(3)直接写出不等式的解集-参考答案-一、单选题1、C【分析】由题意根据反比例函数的自变量与相应函数值的乘积是常数,可得答案【详解】解:C中,其余的都不具有这种关系C是反比例函数关系,故C正确;故选:C【点睛】本题考查反比例函数,注意掌握反比例函数的自变量与相应函数值的乘积是常数2、D【分析】根据反比例函数的性质:当k0,双曲线的两支分别位于第一、三象限,在每一象限内y随x的增大而减小进行分析即可【详解】解:A、反比例函数中的k40,双曲线的两支分别位于第一、三象限,正确,不符合题意;B、点(1,4)在它的图象上,正确,不符合题意;C、反比例函数的图象既是轴对称图形又是中心对称图形,正确,不符合题意;D、反比例函数y中的k40,其在每一象限内y随x的增大而减小,不正确,符合题意;故选:D【点睛】本题考查反比例函数图象与性质,关键掌握以下性质:反比例函数(k0),当k0,反比例函数图象在一、三象限,每个象限内,y随x的增大而减小;当k0,反比例函数图象在第二、四象限内,每个象限内,y随x的增大而增大3、C【分析】分析反比例函数在各个象限内的增减性,然后判断三个点即可【详解】解:,反比例函数(a为常数)图象在二、四象限,且在每个象限内随增大而增大,故选:C【点睛】本题考查了根据反比例函数判断反比例函数的增减性,根据增减性判断函数值大小,熟练掌握反比例函数的性质是解本题的关键4、C【分析】先证明可得如图,过作轴于 利用等腰直角三角形的性质证明再利用反比例函数值的几何意义可得答案.【详解】解: 和均为等腰直角三角形, 如图,过作轴于 为等腰直角三角形, 反比例函数的图象在第一象限,则 故选C【点睛】本题考查的是等腰直角三角形的性质,反比例函数值的几何意义,掌握“反比例函数k值的几何意义”是解本题的关键.5、B【分析】根据正比例函数,反比例函数以及二次函数的性质对选项逐个判断即可【详解】解:A、,经过原点,不符合题意;B、,反比例函数,不经过原点,符合题意;C、,二次函数,经过原点,不符合题意;D、,经过原点,不符合题意;故选B【点睛】此题考查了正比例函数,反比例函数以及二次函数的性质,掌握它们的性质是解题的关键6、C【分析】直接利用反比例函数图象上点的坐标特点进而得出答案【详解】解:y=,xy=12A(-2,6),此时xy=-2×6=-1212,不符合题意;B、(3,-4),此时xy=3×(-4)=-1212,不符合题意;C、(-2,-6),此时xy=2×6=12,符合题意;D、(-3, 4),此时xy=-3×4=-1212,不合题意;故选C【点睛】此题主要考查了反比例函数图象上点的坐标特征,有理数乘法,属于基础题7、B【分析】联立正比例函数与反比例函数解析式,求出它们的交点坐标即可得到答案【详解】解:联立得:,解得,解得或正比例函数和反比例函数都经过(1,2)或(-1,-2),故选B【点睛】本题主要考查了正比例函数与反比例函数的交点坐标,解题的关键在于能够熟练掌握求正比例函数与反比例函数交点坐标的方法8、A【分析】设函数解析式为I= ,由于点(6,8)在函数图象上,故代入可求得k的值【详解】解:设所求函数解析式为I= ,(6,8)在所求函数解析式上,k=6×8=48,故选A【点睛】本题考查了由实际问题求反比例函数解析式,点在函数图象上,就一定适合这个函数解析式9、B【分析】根据反比例函数的定义即可判断【详解】解:A、是一次函数,不是反比例函数,故此选项不合题意;B、是反比例函数,故此选项符合题意;C、不是反比例函数,故此选项不合题意;D、是正比例函数,不是反比例函数,故此选项不合题意;故选B【点睛】此题主要考查反比例函数的识别,解题的关键是熟知反比例函数的定义:一般地,形如的函数叫做反比例函数10、B【分析】根据所学知识对五个命题进行判断即可【详解】1、,故方程无实数根,故本命题错误;2、圆上任意两点间的部分叫做圆弧,半圆也是,故本命题正确;3、八边形绕中心旋转180°以后仍然与原图重合,故本命题正确;4、抛硬币无论抛多少,出现正反面朝上都是随机事件,故抛三枚硬币全部正面朝上也是随机事件,故本命题正确;5、反比例函数的图象经过点 (1,2) ,则,它的函数图像位于一三象限,故本命题错误综上所述,正确个数为3故选B【点睛】本题考查一元二次函数判别式、弧的定义、中心对称图形判断、随机事件理解、反比例函数图像,掌握这些是本题关键二、填空题1、或【解析】【分析】根据题意作出图形,过点作轴,交直线于点,根据点的坐标求得直线和双曲线的解析式,设,进而求得的坐标,即可求得的长,当点位于点的左侧时,求得的面积,根据题意可得,当点位于点的右侧时,则,建立方程即可求得的值,从而求得的坐标【详解】如图,过点作轴,点A(4,1)为直线ykx(k0)和双曲线y(m0)的一个交点,直线解析式为,双曲线为,设,当点在点的左侧时,根据题意可得,解得,的坐标为,当点在点的右侧时,解得综上所述,的坐标为或故答案为:或【点睛】本题考查了正比例函数与反比例函数综合,求三角形的面积,分类讨论是解题的关键2、9.6【解析】【分析】由题意易知点P1的坐标为(2,6),然后根据平移可把右边三个矩形进行平移,进而可得S1+S2+S3+S4S矩形ABCP1,最后问题可求解【详解】解:当x2时,y6,点P1的坐标为(2,10),如图所示,将右边三个矩形平移,把x10代入反比例解析式得:y1.2,P1CAB61.24.8,则S1+S2+S3+S4S矩形ABCP14.8×29.6,故答案为:9.6【点睛】本题主要考查反比例函数比例系数的几何意义,熟练掌握反比例函数的几何意义是解题的关键3、【解析】【分析】根据反比例函数与一次函数的图象性质分析判断即可;【详解】观察图象可知,当时,则的取值范围是,;故答案是,【点睛】本题主要考查了反比例函数与一次函数的图象性质,准确分析判断是解题的关键4、【解析】【分析】设C点坐标为(m,n),反比例函数解析式为,则CD=-m,OD=n,由此即可得到,从而得到【详解】解:设C点坐标为(m,n),反比例函数解析式为,CDy轴,CD=-m,OD=n,反比例函数解析式为,故答案为:【点睛】本题主要考查了反比例函数比例系数的几何意义,解题的关键在于能够熟练掌握反比例函数比例系数的几何意义5、y1 y2【解析】【分析】根据,随的增大而减小,即可判断y1,y2的大小关系【详解】解:由,可得, 反比例函数,函数值随的增大而减小,-2-1,y1 y2故答案为:y1 y2【点睛】本题考查了判断反比例函数的增减性,根据增减性判断函数值的大小,掌握反比例函数的性质是解题的关键三、解答题1、(1);(2),【分析】(1)过点A作轴于D,可证,得出A点坐标,待定系数法求出解析式即可;(2)将点代入(1)中解析式和直线平移后的直线解析式中,分别求出,的值即可【详解】解:(1)如图,过点A作轴于D,则,又,BOC=CDA=90°,点C的坐标为(2,0),点B的坐标为(0,4),OD=OC+CD=6,点A的坐标为(6,2),把A点坐标代入到反比例函数中,得,反比例函数解析式为;(2)在上,设直线OA解析式为,直线OA解析式为直线向上平移个单位后的解析式为:,直线图象经过(3,4)解得:,【点睛】本题考查了待定系数法求反比例函数解析式,正比例函数解析式,函数图像的平移,三角形全等的性质与判定,解题的关键是掌握一次函数与反比例函数的相关性质和数形结合思想2、(1)k1-k2;(2)2,;,3;【分析】(1)根据反比例函数中比例系数k的几何意义即可解答;(2)根据PEx轴,PFy轴可知,P、E两点的横坐标相同,P、F两点的纵坐标相同,分别把P点的横纵坐标代入反比例函数y=即可求出E、F两点的坐标;先根据P点的坐标求出k1的值,再由E、F两点的坐标用k2表示出PE、PF的长,再用k2表示出PEF的面积,把(1)的结论代入求解即可【详解】解:(1)P是点P是反比例函数y= (k10,x0)图象上一动点,S矩形PBOA=k1,E、F分别是反比例函数y=(k20且|k2|k1)的图象上两点,SOBF=SAOE=|k2|,四边形PEOF的面积S1=S矩形PBOA+SOBF+SAOE=k1+|k2|,k20,四边形PEOF的面积S1=S矩形PBOA+SOBF+SAOE=k1+|k2|=k1-k2故答案为:k1-k2;(2)PEx轴,PFy轴可知,P、E两点的横坐标相同,P、F两点的纵坐标相同,E、F两点的坐标分别为E(2,),F(,3);故答案为:2,;,3;P(2,3)在函数y=的图象上,k1=6,E、F两点的坐标分别为E(2,),F(,3);PE=3-,PF=2-,SPEF=,SOEF=,k20,k2=-9反比例函数y=的解析式为【点睛】本题考查了反比例函数综合题,涉及到反比例函数系数k的几何意义及三角形的面积公式、两点间的距离公式,涉及面较广,难度较大3、(1);(2)【分析】(1)将点和代入解析式,待定系数法求解析式即可求得的值;(2)联立双曲线解析式与直线解析式即可求得点的坐标,根据第一象限的点坐标特征取舍即可【详解】解:(1)直线过点和,解得(2)解方程组得或【点睛】本题考查了一次函数与反比例函数综合,待定系数法求一次函数解析式,求一次函数与反比例函数交点问题,解一元二次方程,求得直线解析式是解题的关键4、(1)函数关系式为:S=;(2)该轿车可以行驶875千米【分析】(1)将a=0.1,S=700代入到函数的关系S=中即可求得k的值,从而确定解析式;(2)将a=0.08代入求得的函数的解析式即可求得S的值【详解】解:(1)由题意得:a=0.1,S=700,代入反比例函数关系S=中,解得:k=Sa=70,所以函数关系式为:S=;(2)将a=0.08代入S=得:S=875千米,故该轿车可以行驶875千米【点睛】本题考查了反比例函数的应用,解题的关键是从实际问题中抽象出反比例函数模型5、(1);(2)或;(3)【分析】1)将A点坐标代入代入,求出m的值为2,再将代入,求出k的值,即可得到一次函数的解析式;(2)将三角形以x轴为分界线,分为两个三角形计算,再把它们相加;(3)根据图象即可求得【详解】(1)将代入得,m=-2,则A点坐标为A(-2,2),将A(-2,2)、代入得,解得,则一次函数解析式为;(2)一次函数与x轴的交点为CSABP=SACP+SBPC,解得,则P点坐标为或(2)A(-2,2),由图象可知不等式的解集为;【点睛】本题考查了反比例函数与一次函数的交点问题,求出函数解析式并熟悉点的坐标与图形的关系是解题的关键