2022年京改版七年级数学下册第五章二元一次方程组专项训练试卷(含答案详解).docx
-
资源ID:28161787
资源大小:348.94KB
全文页数:19页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年京改版七年级数学下册第五章二元一次方程组专项训练试卷(含答案详解).docx
京改版七年级数学下册第五章二元一次方程组专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、图1是我国古代传说中的洛书,图2是洛书的数字表示相传,大禹时,洛阳西洛宁县洛河中浮出神龟,背驮“洛书”,献给大禹大禹依此治水成功,遂划天下为九州又依此定九章大法,治理社会,流传下来收入尚书中,名洪范易·系辞上说:“河出图,洛出书,圣人则之”洛书是一个三阶幻方,就是将已知的9个数填入的方格中,使每一横行、每一竖列以及两条斜对角线上的数字之和都相等图3是一个不完整的幻方,根据幻方的规则,由已知数求出 x的值应为( )A-4B-3C3D42、已知关于x、y的方程组的解满足2xy2k,则k的值为( )AkBkCkDk3、九章算术中记载了一个问题,原文如下:“今有人共买物,人出八,盈三;人出七,不足四问人数,物价各几何?”大意是:有几个人一起去买一件物品,每人出8文,多3文;每人出7文,少4文,求人数及该物品的价格小明用二元一次方程组解此问题,若已经列出一个方程,则符合题意的另一个方程是( )ABCD4、若是关于x、y的二元一次方程ax-5y=1的解,则a的值为( )A-5B-1C9D115、在某场CBA比赛中,某位运动员的技术统计如下表所示:技术上场时间(分钟)出手投篮(次)投中(次)罚球得分(分)篮板(个)防攻(次)个人总得分(分)数据38271163433注:表中出手投篮次数和投中次数均不包括罚球;总得分两分球得分+三分球得分+罚球得分根据以上信息,本场比赛中该运动员投中两分球和三分球各()个A5,6B6,5C4,7D7,46、如果的解都是正数,那么a 的取值范围是( )Aa<2;B;C ;D 7、为迎接2022年北京冬奧会,某班开展了以迎冬奥为主题的体育活动,计划拿出200元钱全部用于购买甲、乙两种奖品(两种奖品都购买),奖励表现突出的学生,已知甲种奖品每件25元,乙种奖品每件10元,则购买方案有( )A2种B3种C4种D5种8、下列各组数值是二元次方程2xy5的解是( )ABCD9、用代入法解方程组,以下各式正确的是( )ABCD10、关于x,y的方程,k比b大1,且当时,则k,b的值分别是( )A,B2,1C-2,1D-1,0第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、近日天气晴朗,某集团公司准备组织全体员工外出踏青决定租用甲、乙、丙三种型号的巴士出行(每辆车座位数不少于20),甲型巴士每辆车的乘载量是乙型巴士的2倍,丙型巴士每辆可乘坐40人现在旅游公司有甲、乙、丙型巴士若干辆,预计该集团公司安排甲型、丙型巴士共计11辆,其余员工安排乙型巴士,每辆巴士均满载,这样乘坐乙型巴士和丙型巴士的员工共376人临行前,突然有若干人因特殊原因请假,这样一来刚好可以减少租用一辆乙型巴士,且有辆乙型巴士多出5个空位,这样甲、乙两种型号巴士共计装载259人,则该集团公司共有 _名员工2、已知,则_3、已知x、y满足方程组,则的值为_4、若x,y满足, 则式子x29y2的值为 _5、方程组的解为:_三、解答题(5小题,每小题10分,共计50分)1、若关于x,y的方程组与的解相同,求a,b的值;2、方程组的解满足2xky10(k是常数)(1)求k的值;(2)求出关于x,y的方程(k1)x2y13的正整数解3、解方程:4、解方程组(1) (2)5、解下列方程组:(1);(2)-参考答案-一、单选题1、A【分析】如图所示,其中a、b、c、d表示此方格中表示的数,则可得由此即可得到,然后把代入中即可求解【详解】解:如图所示,其中a、b、c、d表示此方格中表示的数,由题意得:,由得,由得,把和代入中得,故选A【点睛】本题主要考查了解方程组,解题得关键在于能够利用整体代入的思想进行求解2、A【分析】根据得出,然后代入中即可求解【详解】解:,+得,得:,得:,解得:故选:A【点睛】本题考查了解三元一次方程组,根据题意得出的代数式是解题的关键3、B【分析】根据题意,可知设每人出x文,总共y文,再列另一个方程即可【详解】,设每人出x文,总共y文,另一个方程为,故选B【点睛】本题考查了二元一次方程组,正确设未知数,灵活列方程是解题的关键4、D【分析】把代入ax-5y=1解方程即可求解【详解】解:是关于x、y的二元一次方程ax-5y=1的解,将代入ax-5y=1,得:,解得:故选:D【点睛】此题考查了二元一次方程解的含义,解题的关键是熟练掌握二元一次方程解的含义5、B【分析】设本场比赛中该运动员投中两分球x个,三分球y个,根据投中次数结合总分,即可得出关于x、y的二元一次方程组,解之即可得出结论【详解】解:设本场比赛中该运动员投中两分球x个,三分球y个,根据题意得:,解得:答:设本场比赛中该运动员投中两分球6个,三分球5个故选:B【点睛】本题考查统计表和了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键6、C【分析】先解方程组,求出用含a表示的x、y,根据方程组的解为正数,列不等式求解即可【详解】解:,×2得,+得,把代入得,的解都是正数,解得故选择C【点睛】本题考查含参数的二元一次方程组,不等式组,熟练掌握二元一次方程组解法,不等式组解法是解题关键7、B【分析】设购买甲种奖品为x件,乙种奖品为y件,由题意可得,进而求解即可【详解】解:设购买甲种奖品为x件,乙种奖品为y件,由题意可得:,且x、y都为正整数,当时,则;当时,则;当时,则;当时,则(不合题意舍去);购买方案有3种;故选B【点睛】本题主要考查二元一次方程的应用,正确理解题意、掌握二元一次方程整数解求解的方法是解题的关键8、D【分析】将选项中的解分别代入方程2xy5,使方程成立的即为所求【详解】解:A. 把代入方程2xy5,-4-1=-55,不满足题意;B. 把代入方程2xy5,0-5=-55,不满足题意;C. 把代入方程2xy5,2-3=-15,不满足题意;D. 把代入方程2xy5,6-1=5,满足题意;故选:D【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值能正确掌握方程的解得概念是解答此题的关键9、B【分析】根据代入消元法的步骤把变形代入到中,然后整理即可得到答案【详解】解:由得,代入得,移项可得,故选B【点睛】本题考查了代入消元法,熟练掌握代入法是解题的关键10、A【分析】将时,代入,得 ,再由k比b大1得 ,将两个方程联立解之即可【详解】将时,代入,得 ,再由k比b大1得 ,联立,解得,故选:A【点睛】此题考查解二元一次方程组的实际应用,正确掌握k、b之间的关系列得方程组是解题的关键二、填空题1、568【解析】【分析】设甲型巴士a辆,乙型巴士b辆,丙型巴士(11a)辆,乙型巴士乘载量为x人,由题意列出方程,由整数解的思想可求解【详解】解:设甲型巴士a辆,乙型巴士b辆,丙型巴士(11a)辆,乙型巴士乘载量为x人,由题意可得:,解得:x,1a10,且a为整数,b4,总人数4×484×2440×7568(人),故答案为:568【点睛】本题考查了三元一次方程组的应用,利用整数解的思想解决问题是本题的关键2、15:7:6;【解析】【分析】由三元一次方程组,将用关于的代数式表示出来,再求比值即可【详解】解:原方程组化为-得,故故答案为:【点睛】本题考查三元一次方程组的解法,牢记解法步骤并能够灵活应用是解题的重点3、1【解析】【分析】利用整体思想直接用方程-即可得结果【详解】解:,-得,4x+4y=4,x+y=1,故答案为:1【点睛】本题考查了二元一次方程组的解,解二元一次方程组,解决本题的关键是掌握整体思想4、-6【解析】【分析】利用加减消元法消去y,求出x的值,然后利用代入法求出y得到方程组的解,代入x29y2求解即可【详解】解:,由+得:2x=1,x=,把x=代入得:y=,x29y2=,故答案为:-6【点睛】本题考查了解二元一次方程组以及应用,掌握解方程组的方法和步骤是解题的关键5、【解析】【分析】先把原方程组中的两个方程相减,得方程,再运用加减法解方程组即可【详解】解:-,得2x-2y=2,即x-y=1×2009,得2009x-2009y=2009-,得x=-1把x=-1代入得y=-2原方程组的解是故答案为【点睛】本题主要考查了二元一次方程组的求解,灵活运用加减法解方程组是求方程组解的关键三、解答题1、【分析】由题意可先解方程组,求出x、y后代入含a、b的两个方程,进一步即可求出结果;【详解】解:解方程组,得,代入,得,解得【点睛】本题考查了同解方程组,正确理解题意、熟练掌握二元一次方程组的解法是关键2、(1);(2),【分析】(1)先求出方程组的解,再代入方程,即可求出k值;(2)把k的值代入方程得:,再根据x、y都是正整数,得到,由此求解即可【详解】解:(1),把×2得:,用+得:,解得,把代入,解得,方程组的解为:,将代入得:,解得:;(2)把代入方程得:,即,x、y都是正整数,当时,;当时,;关于x,y的方程的正整数解为或【点睛】本题主要考查了解一元一次方程和解二元一次方程组,解题的关键在于能够熟练掌握解一元一次方程和解二元一次方程组的方法3、方程组的解是【分析】根据加减消元法求解方程组即可;【详解】解:,得,解得,将代入得,解得,所以方程组的解是【点睛】本题主要考查了二元一次方程组的求解,熟练掌握运用加减消元法是解题关键4、(1);(2)【分析】(1)利用加减消元法解二元一次方程组即可;(2)利用加减消元法解二元一次方程组即可【详解】解:(1)用 ×2+得,解得,把代入得,解得,方程组的解为:;(2)用 ×2+×3得,解得,把代入得,解得,方程组的解为:【点睛】本题主要考查了解二元一次方程组,解题的关键在于能够熟练掌握解二元一次方程组的方法5、(1) ;(2)【分析】利用加减消元法,即可求解【详解】解:(1)由×3-,得: ,解得: ,把代入,得: ,解得: ,所以方程组的解为 ;(2),由×2-×3,得: ,解得: ,把代入,得: ,解得: ,所以方程组的解为 【点睛】本题主要考查了解二元一次方程组,熟练掌握二元一次方程组的解法代入消元法和加减消元法是解题的关键