2022年沪科版九年级数学下册第24章圆专题训练练习题(无超纲).docx
-
资源ID:28162607
资源大小:1.10MB
全文页数:26页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年沪科版九年级数学下册第24章圆专题训练练习题(无超纲).docx
沪科版九年级数学下册第24章圆专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积( )A不变B面积扩大为原来的3倍C面积扩大为原来的9倍D面积缩小为原来的2、下列图形中,既是轴对称图形又是中心对称图形的是( )ABCD3、下列图形中,既是轴对称图形,又是中心对称图形的是()ABCD4、如图,将OAB绕点O逆时针旋转80°得到OCD,若A的度数为110°,D的度数为40°,则AOD的度数是( )A50°B60°C40°D30°5、小明将图案绕某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为( )A30°B60°C90°D120°6、下列说法正确的个数有( )方程的两个实数根的和等于1;半圆是弧;正八边形是中心对称图形;“抛掷3枚质地均匀的硬币全部正面朝上”是随机事件;如果反比例函数的图象经过点,则这个函数图象位于第二、四象限A2个B3个C4个D5个7、下列图形中,可以看作是中心对称图形的是( )ABCD8、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cmA3B6C12D189、下列汽车标志中既是轴对称图形又是中心对称图形的是( )ABCD10、如图,AB是的直径,的弦DC的延长线与AB的延长线相交于点P,于点E,则阴影部分的面积为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点C是半圆上一动点,以BC为边作正方形BCDE(使在正方形内),连OE,若AB4cm,则OE的最大值为_cm2、龙湖实验中学的操场有4条等宽的跑道,每条跑道是由两条直跑道和两个半圆形弧道连接而成,请根据小泓与瞿老师的对话计算每条跑道的宽度是_米3、如图,AB是半圆O的弦,DE是直径,过点B的切线BC与O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则BDC的度数为_4、已知如图,AB=8,AC=4,BAC=60°,BC所在圆的圆心是点O,BOC=60°,分别在、线段AB和AC上选取点P、E、F,则PE+EF+FP的最小值为_5、若一次函数ykx+8(k0)的图象与x轴、y轴分别交于A、B两点,当k的取值变化时,点A随之在x轴上运动,将线段AB绕点B逆时针旋转90°得到BQ,连接OQ,则OQ长的最小值是 _三、解答题(5小题,每小题10分,共计50分)1、在等边中,将线段AB绕点A顺时针旋转得到线段AD(1)若线段DA的延长线与线段BC相交于点E(不与点B,C重合),写出满足条件的的取值范围;(2)在(1)的条件下连接BD,交CA的延长线于点F依题意补全图形;用等式表示线段AE,AF,CE之间的数量关系,并证明2、如图1,图2,图3的网格均由边长为1的小正方形组成,图1是三国时期吴国的数学家赵爽所绘制的“弦图”,它由四个形状、大小完全相同的直角三角形组成,赵爽利用这个“弦图”对勾股定理作出了证明,是中国古代数学的一项重要成就,请根据下列要求解答问题(1)图1中的“弦图”的四个直角三角形组成的图形是 对称图形(填“轴”或“中心”)(2)请将“弦图”中的四个直角三角形通过你所学过的图形变换,在图2,3的方格纸中设计另外两个不同的图案,画图要求:每个直角三角形的顶点均在方格纸的格点上,且四个三角形互不重叠,不必涂阴影;图2中所设计的图案(不含方格纸)必须是轴对称图形而不是中心对称图形;图3中所设计的图案(不含方格纸)必须既是轴对称图形,又是中心对称图形3、如图,在ABC中,ACB=90°,AC=BC,D是AB边上一点(与A、B不重合),连接CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连接DE、BE(1)求证:ACDBCE;(2)若BE=5,DE=13,求AB的长4、如图,AB是O的直径,弦CDAB于点E,AM是ACD的外角DAF的平分线(1)求证:AM是O的切线;(2)连接CO并延长交AM于点N,若O的半径为2,ANC = 30°,求CD的长5、如图,为的直径,为的切线,弦,直线交的延长线于点,连接求证:(1);(2)-参考答案-一、单选题1、A【分析】设原来扇形的半径为r,圆心角为n,则变化后的扇形的半径为3r,圆心角为,利用扇形的面积公式即可计算得出它们的面积,从而进行比较即可得答案【详解】设原来扇形的半径为r,圆心角为n,原来扇形的面积为,扇形的半径扩大为原来的3倍,圆心角缩小为原来的,变化后的扇形的半径为3r,圆心角为,变化后的扇形的面积为,扇形的面积不变故选:A【点睛】本题考查了扇形面积,熟练掌握并灵活运用扇形面积公式是解题关键2、D【详解】解:不是轴对称图形,也不是中心对称图形,故本选项不符合题意;不是轴对称图形,是中心对称图形,故本选项不符合题意;是轴对称图形,不是中心对称图形,故本选项不符合题意;既是轴对称图形,又是中心对称图形,故本选项符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合3、C【详解】解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;选项B不是轴对称图形,是中心对称图形,故B不符合题意;选项C既是轴对称图形,也是中心对称图形,故C符合题意;选项D是轴对称图形,不是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.4、A【分析】根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.【详解】解: 将OAB绕点O逆时针旋转80°得到OCD, A的度数为110°,D的度数为40°, 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.5、B【分析】由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°进行分析即可得出答案.【详解】解:因为每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°,所以每次旋转相同角度 .故选:B.【点睛】本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数6、B【分析】根据所学知识对五个命题进行判断即可【详解】1、=12-4×1=-3<0,故方程无实数根,故本命题错误;2、圆上任意两点间的部分叫做圆弧,半圆也是,故本命题正确;3、八边形绕中心旋转180°以后仍然与原图重合,故本命题正确;4、抛硬币无论抛多少,出现正反面朝上都是随机事件,故抛三枚硬币全部正面朝上也是随机事件,故本命题正确;5、反比例函数的图象经过点 (1,2) ,则,它的函数图像位于一三象限,故本命题错误综上所述,正确个数为3故选B【点睛】本题考查一元二次函数判别式、弧的定义、中心对称图形判断、随机事件理解、反比例函数图像,掌握这些是本题关键7、B【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解【详解】A不是中心对称图形,故本选项不符合题意;B是中心对称图形,故本选项符合题意;C不是中心对称图形,故本选项不符合题意;D不是中心对称图形,故本选项不符合题意故选:B【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合8、B【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算【详解】解:它的侧面展开图的面积×2×2×36(cm2)故选:B【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长9、C【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、不是轴对称图形,是中心对称图形,故此选项不符合题意;故选:C【点睛】此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合10、B【分析】由垂径定理可知,AE=CE,则阴影部分的面积等于扇形AOD的面积,求出,然后利用扇形面积公式,即可求出答案【详解】解:根据题意,如图:AB是的直径,OD是半径,AE=CE,阴影CED的面积等于AED的面积,;故选:B【点睛】本题考查了求扇形的面积,垂径定理,解题的关键是掌握所学的知识,正确利用扇形的面积公式进行计算二、填空题1、【分析】如图,连接OD,OE,OC,设DO与O交于点M,连接CM,BM,通过OCDOBE(SAS),可得OEOD,通过旋转观察如图可知当DOAB时,DO最长,此时OE最长,设DO与O交于点M,连接CM,先证明MEDMEB,得MDBM再利用勾股定理计算即可【详解】解:如图,连接OD,OE,OC,设DO与O交于点M,连接CM,BM,四边形BCDE是正方形,BCDCBE90°,CDBCBEDE,OBOC,OCBOBC,BCD+OCBCBE+OBC,即OCDOBE,OCDOBE(SAS),OEOD,根据旋转的性质,观察图形可知当DOAB时,DO最长,即OE最长,MCBMOB×90°45°,DCMBCM45°,四边形BCDE是正方形,C、M、E共线,DEMBEM,在EMD和EMB中,MEDMEB(SAS),DMBM2(cm),OD的最大值2+2,即OE的最大值2+2;故答案为:(2+2)cm【点睛】本题考查了正方形的性质、全等三角形的判定与性质,圆周角定理等知识,解题的关键是OD取得最大值时的位置,学会通过特殊位置探究得出结论2、【分析】设跑道的宽为米,根据直道长度一样,外圈与内圈的差是两个圆周长的差,列出式子求解即可【详解】解:设跑道的宽为米,由对称性设内圈两个半圆形弧道拼成的圆的半径为,根据题意可得:,解得:,故答案是:【点睛】本题考查了圆的基本概念,一元一次方程,解题的关键是根据题意列出等式求解3、【分析】先由切线的性质得到OBC=90°,再由平行四边形的性质得到BO=BC,则BOC=BCO=45°,由OD=OB,得到ODB=OBD,由ODB+OBD=BOC,即可得到ODB=OBD=22.5°,即BDC=22.5°【详解】解:BC是圆O的切线,OBC=90°,四边形ABCO是平行四边形,AO=BC,又AO=BO,BO=BC,BOC=BCO=45°,OD=OB,ODB=OBD,ODB+OBD=BOC,ODB=OBD=22.5°,即BDC=22.5°,故答案为:22.5°【点睛】本题主要考查了平行四边形的性质,切线的性质,等腰三角形的性质与判定,三角形外角的性质,熟知切线的性质是解题的关键4、12【分析】如图,连接BC,AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E,交AC于F,此时PEF的周长=PE+PF+EF=EM+EF+FM=MN,想办法求出MN的最小值即可解决问题【详解】解:如图,连接BC,AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E,交AC于F,此时PEF的周长=PE+PF+EF=EM+EF+FM=MN,当MN的值最小时,PEF的值最小,AP=AM=AN,BAM=BAP,CAP=CAN,BAC=60°,MAN=120°,MN=AM=PA,当PA的值最小时,MN的值最小,取AB的中点J,连接CJAB=8,AC=4,AJ=JB=AC=4,JAC=60°,JAC是等边三角形,JC=JA=JB,ACB=90°,BC=,BOC=60°,OB=OC,OBC是等边三角形,OB=OC=BC=4,BCO=60°,ACH=30°,AHOH,AH=AC=2,CH=AH=2,OH=6,OA=4,当点P在直线OA上时,PA的值最小,最小值为-,MN的最小值为(-)=-12故答案:-12【点睛】本题考查了圆周角定理,垂径定理,轴对称-最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考填空题中的压轴题5、8【分析】根据一次函数解析式可得:,过点B作轴,过点A作,过点Q作,由旋转的性质可得,依据全等三角形的判定定理及性质可得:MABNBQ,即可确定点Q的坐标,然后利用勾股定理得出OQ的长度,最后考虑在什么情况下取得最小值即可【详解】解:函数得:,过点B作轴,过点A作,过点Q作,连接OQ,如图所示:将线段BA绕点B逆时针旋转得到线段BQ,在MAB与NBQ中,MABNBQ,点Q的坐标为,当或时,取得最小值为8,故答案为:8【点睛】题目主要考查一次函数与几何的综合问题,包括与坐标轴的交点,旋转,全等三角形的判定和性质,勾股定理等,理解题意,作出相应图形是解题关键三、解答题1、(1);(2)见解析;AE=AF+CE,证明见解析【分析】(1)根据“线段DA的延长线与线段BC相交于点E”可求解;(2)根据要求画出图形,即可得出结论;在AE上截取AH=AF,先证AFDAHC,再证CHE=HCE,即可得出结果【详解】(1)如图:AD只能在锐角EAF内旋转符合题意故的取值范围为:;(2)补全图形如下:(3)AE=AF+CE,证明:在AE上截取AH=AF,由旋转可得:AB=AD,D=ABF,ABC为等边三角形,AB=AC,BAC=ACB=60°,AD=AC,DAF=CAH,AFDAHC,AFD=AHC,D=ACH,AFB=CHE,AFB+ABF=ACH+HCE=60°,CHE+D=D+HCE=60°,CHE=HCE,CE=HE,AE=AH+HE=AF+CE【点睛】本题考查了旋转的性质,三角形外角的性质,等边三角形性质及应用,解题的关键是正确画出图形和作出辅助线2、(1)中心(2)见解析【分析】(1)利用中心对称图形的意义得到答案即可;(2)每个直角三角形的顶点均在方格纸的格点上,且四个三角形不重叠,是轴对称图形;所设计的图案(不含方格纸)必须是中心对称图形或轴对称图形(1)图1中的“弦图”的四个直角三角形组成的图形是中心对称图形,故答案为:中心;(2)如图2是轴对称图形而不是中心对称图形;图3既是轴对称图形,又是中心对称图形【点睛】本题考查利用旋转或轴对称设计方案,关键是理解旋转和轴对称的概念,按要求作图即可3、(1)见解析;(2)17【分析】(1)由旋转的性质可得CDCE,DCE90°ACB,由“SAS”可证ACDBCE;(2)由ACB90°,ACBC,可得CABCBA45°,再由ACDBCE,得到BEAD=5,CBECAD45°,则ABEABC+CBE90°,然后利用勾股定理求出BD的长即可得到答案【详解】解:(1)证明:将线段CD绕点C按逆时针方向旋转90°得到线段CE,CDCE,DCE90°ACB,ACD+BCD=BCE+BCD,即ACDBCE,在ACD和BCE中,ACDBCE(SAS);(2)ACB90°,ACBC,CABCBA45°,ACDBCE,BEAD=5,CBECAD45°,ABEABC+CBE90°,AB=AD+BD=17【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,证明三角形全等是解题的关键4、(1)见解析(2)CD=2【分析】(1)由题意易得BC=BD,DAM=DAF,则有CAB=DAB,进而可得BAM=90°,然后问题可求证;(2)由题意易得CD/AM,ANC=OCE=30°,然后可得OE=1,CE=,进而问题可求解(1)证明:AB是O的直径,弦CDAB于点EBC=BDCAB=DABAM是DAF的平分线DAM=DAFCAD+DAF=180°DAB+DAM=90°即BAM=90°,ABAMAM是O的切线(2)解:ABCD,ABAM CD/AMANC=OCE=30°在RtOCE中,OC=2OE=1,CE=AB是O的直径,弦CDAB于点ECD=2CE=2【点睛】本题主要考查切线的判定定理、垂径定理及含30度直角三角形的性质,熟练掌握切线的判定定理、垂径定理及含30度直角三角形的性质是解题的关键5、(1)见解析;(2)见解析【分析】(1)连接,根据,可证从而可得,即可证明,故;(2)证明,可得,即可证明【详解】证明:(1)连接,如图:为的直径,为的切线,在和中,为的直径,即, ,即,;(2)由(1)知:,又, ,【点睛】本题考查圆中的相似三角形判定与性质,涉及三角形全等的判定与性质,解题的关键是证明,从而得到