欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年强化训练北师大版九年级数学下册第三章-圆章节练习试题(无超纲).docx

    • 资源ID:28162763       资源大小:806.91KB        全文页数:28页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年强化训练北师大版九年级数学下册第三章-圆章节练习试题(无超纲).docx

    北师大版九年级数学下册第三章 圆章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB是O的直径,弦CDAB于E,若OA2,B60°,则CD的长为( )AB2C2D42、如图,BD是O的切线,BCE30°,则D()A40°B50°C60°D30°3、如图,面积为18的正方形ABCD内接于O,则O的半径为( )ABC3D4、如图,已知AB是O的直径,CD是弦,若BCD36°,则ABD等于()A54°B56°C64°D66°5、如图,边长为4的正三角形外接圆,以其各边为直径作半圆,则图中阴影部分面积为()A12+2B4+C24+2D12+146、下列说法正确的是( )A弧长相等的弧是等弧B直径是最长的弦C三点确定一个圆D相等的圆心角所对的弦相等7、如图,FA、FB分别与O相切于A、B两点,点C为劣弧AB上一点,过点C的切线分别交FA、FB于D、E两点,若F60°,FDE的周长为12,则O的半径长为()AB2C2D38、已知O的半径为4,点P 在O外部,则OP需要满足的条件是( )AOP>4B0OP<4COP>2D0OP<29、如图,在中,连接AC,CD,则AC与CD的关系是( )ABCD无法比较10、如图,是正方形的外接圆,若的半径为4,则正方形的边长为( )A4B8CD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,以点为圆心,2为半径的与相切于点,交于点,交于点,点是上一点,且,则图中阴影部分的面积是_2、如图,矩形的对角线、相交于点,分别以点、为圆心,长为半径画弧,分别交、于点、若,则图中阴影部分的面积为_(结果保留)3、如图,AB是半圆O的直径,点D在半圆O上,C是弧BD上的一个动点,连接AC,过D点作于H连接BH,则在点C移动的过程中,线段BH的最小值是_4、如图,AB、CD为一个正多边形的两条边,O为该正多边形的中心,若ADB12°,则该正多边形的边数为 _5、如图,点D为边长是的等边ABC边AB左侧一动点,不与点A,B重合的动点D在运动过程中始终保持ADB120°不变,则四边形ADBC的面积S的最大值是 _三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,ABAC,以AB为直径的O交BC于D,交AC于E,连接OE,过点D作DFAC于F(1)求证:DF与O相切;(2)填空:若CDF的面积为3,则CDE的面积为 当CDF的度数为 时,OEBC,此时四边形ODCE的形状是: 2、如图,A是上一点,过点A作的切线(1)连接OA并延长,使AB=OA;作线段OB的垂直平分线;使用直尺和圆规,在图中作OB的垂直平分线l(保留作图痕迹)(2)直线l即为所求作的切线,完成如下证明证明:在中,直线l垂直平分OB直线l经过半径OA的外端,且_,直线l是的切线(_)(填推理的依据)3、如图,是的直径,四边形内接于,是的中点,交的延长线于点(1)求证:是的切线;(2)若,求的长4、如图,在ABC中,C90°,点O为边BC上一点以O为圆心,OC为半径的O与边AB相切于点D(1)尺规作图:画出O,并标出点D(不写作法,保留作图痕迹);(2)在(1)所作的图中,连接CD,若CDBD,且AC6求劣弧的长5、如图,有一座圆弧形拱桥,桥下水面宽度AB为12m,拱高CD为4m(1)求拱桥的半径(2)有一艘宽为7.8m的货船,船舱顶部为长方形,并高出水面3m,则此货船是否能顺利通过此圆弧形拱桥?并说明理由-参考答案-一、单选题1、B【分析】先证明是等边三角形,再证明求解从而可得答案.【详解】解: 是等边三角形, 故选B【点睛】本题考查的是等边三角形的判定与性质,垂径定理的应用,锐角三角函数的应用,证明是等边三角形是解本题的关键.2、D【分析】连接,根据同弧所对的圆周角相等,等角对等边,三角形的外角性质可得,根据切线的性质可得,根据直角三角形的两个锐角互余即可求得【详解】解:连接 BD是O的切线故选D【点睛】本题考查了切线的性质,等弧所对的圆周角相等,直角三角形的两锐角互余,掌握切线的性质是解题的关键3、C【分析】连接OA、OB,则为等腰直角三角形,由正方形面积为18,可求边长为,进而通过勾股定理,可得半径为3【详解】解:如图,连接OA,OB,则OA=OB,四边形ABCD是正方形,是等腰直角三角形,正方形ABCD的面积是18,即:故选C【点睛】本题考查了正多边形和圆、正方形的性质等知识,构造等腰直角三角形是解题的关键4、A【分析】根据圆周角定理得到ADB90°,ABCD36°,然后利用互余计算ABD的度数【详解】AB是O的直径,ADB90°,DABBCD36°,ABDADBDAB,即ABD90°DAB90°36°54°故选:A【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径5、A【分析】正三角形的面积加上三个小半圆的面积,再减去中间大圆的面积即可得到结果【详解】解:正三角形的面积为:,三个小半圆的面积为:,中间大圆的面积为:,所以阴影部分的面积为:,故选:【点睛】本题考查了正多边形与圆,圆的面积的计算,正三角形的面积的计算,正确的识别图形是解题的关键6、B【分析】利用圆的有关性质、等弧的定义、确定圆的条件及圆心角定理分别判断后即可确定正确的选项【详解】解:、能够完全重合的弧是等弧,故错误,是假命题,不符合题意;、直径是圆中最长的弦,正确,是真命题,符合题意;、不在同一直线上的三点确定一个圆,故错误,是假命题,不符合题意;、同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等,故原命题错误,是假命题,不符合题意;故选:B【点睛】本题考查了命题与定理的知识,解题的关键是了解圆的有关性质、等弧的定义、确定圆的条件及圆心角定理,难度不大7、C【分析】根据切线长定理可得,、,再根据F60°,可知为等边三角形,再FDE的周长为12,可得,求得,再作,即可求解【详解】解:FA、FB分别与O相切于A、B两点,过点C的切线分别交FA、FB于D、E两点,则:、,F60°,为等边三角形,FDE的周长为12,即,即,作,如下图:则,设,则,由勾股定理可得:,解得,故选C【点睛】此题考查了圆的有关性质,切线的性质、切线长定理,垂径定理以及等边三角形的判定与性质,解题的关键是灵活运用相关性质进行求解8、A【分析】点在圆外,则点与圆心的距离大于半径,根据点与圆的位置关系解答【详解】解:O的半径为4,点P 在O外部,OP需要满足的条件是OP>4,故选:A【点睛】此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键9、B【分析】连接AB,BC,根据得,再根据三角形三边关系可得结论【详解】解:连接AB,BC,如图,又 故选:B【点睛】本题考查了三角形三边关系,弧、弦的关系等知识,熟练掌握上述知识是解答本题的关键10、D【分析】连接OB,OC,过点O作OEBC于点E,由等腰直角三角形的性质可知OE=BE,由垂径定理可知BC=2BE,故可得出结论【详解】解:连接OB,OC,过点O作OEBC于点E,OB=OC,BOC=90°,OBE=45°, OE=BE,OE2+BE2=OB2,BC=2BE=,即正方形ABCD的边长是故选:D【点睛】本题考查的是圆周角定理、垂径定理及勾股定理,根据题意作出辅助线,构造出等腰直角三角形是解答此题的关键二、填空题1、【分析】连接AD,由圆周角定理可求出,即可利用扇形面积公式求出由切线的性质可知,即可利用三角形面积公式求出最后根据,即可求出结果【详解】如图,连接AD,BC是O切线,且切点为D,故答案为:【点睛】本题考查圆周角定理,切线的性质,扇形的面积公式连接常用的辅助线是解答本题的关键2、#【分析】由图可知,阴影部分的面积是扇形AEO和扇形CFO的面积之和【详解】解:四边形是矩形,图中阴影部分的面积为:故答案为:【点睛】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答3、#【分析】连接,取的中点,连接,由题可知点在以为圆心,为半径的圆上,当、三点共线时,最小;求出,在中,所以,即为所求【详解】解:连接,取的中点,连接,点在以为圆心,为半径的圆上,当、三点共线时,最小,是直径,在中,故答案为:【点睛】本题考查点的运动轨迹,勾股定理,解题的关键是能够根据点的运动情况,确定点的运动轨迹4、15【分析】根据圆周角定理可得正多边形的边AB所对的圆心角AOB24°,再根据正多边形的一条边所对的圆心角的度数与边数之间的关系可得答案【详解】解:如图,设正多边形的外接圆为O,连接OA,OB,ADB12°,AOB2ADB24°,而360°÷24°15,这个正多边形为正十五边形,故答案为:15【点睛】本题考查正多边形与圆,圆周角,掌握圆周角定理是解决问题的关键,理解正多边形的边数与相应的圆心角之间的关系是解决问题的前提5、【分析】根据题意作等边三角形的外接圆,当点运动到的中点时,四边形ADBC的面积S的最大值,分别求出两个三角形的面积,相加即可【详解】解:根据题意作等边三角形的外接圆,D在运动过程中始终保持ADB120°不变,在圆上运动,当点运动到的中点时,四边形ADBC的面积S的最大值,过点作的垂线交于点,如图:,在中,解得:,过点作的垂线交于,故答案是:【点睛】本题考查了等边三角形,外接圆、勾股定理、动点问题,解题的关键是,作出图象及掌握圆的相关性质三、解答题1、(1)见解析(2)630;菱形【分析】(1)由等腰三角形的性质得ABCC,由OBOD,得ABCODB,则ODBC,得出ODAC,再由DFAC,得出ODDF,即可得出结论;(2)由圆周角定理和平角性质得ABCAED180°,DECAED180°,推出ABCDEC,CDEC,得出DEDC,由等腰三角形的性质得CE2CF,则SCDE2SCDF,即可得出结果;利用平行线的性质证明OE是ABC的中位线,得出BC2OEABAC,则ABC为等边三角形,得C60°,证明CDE为等边三角形,得出CDE60°,由等腰三角形的性质得CDFCDE30°,由OECD,ODCE,得四边形ODCE为平行四边形,再由ODOE,得出平行四边形ODCE为菱形【详解】解:(1)证明:ABAC,ABCC,连接OD,OBOD,ABCODB,ODBC,ODAC,DFAC,ODDF,DF与O相切;(2)解:ABCAED180°,DECAED180°,ABCDEC,ABCC,CDEC,DEDC,DFAC,CE2CF,SCDE2SCDF2×36,故答案为:6;OEBCO点是AB中点E点是AC中点OE是ABC的中位线,BC2OEABAC,ABC为等边三角形,C60°,DEDC,CDE为等边三角形,CDE60°,DFAC,CDF12CDE12×60°30°,OECD,ODCE,四边形ODCE为平行四边形,ODOE,平行四边形ODCE为菱形,故答案为:30;菱形【点睛】本题是圆综合题,主要考查了圆周角定理、切线的判定、平行线的性质与性质、三角形中位线定理、等腰三角形的判定与性质、等边三角形的判定与性质、平行四边形的判定、菱形的判定、三角形面积计算等知识;熟练掌握切线的判定和等腰三角形的判定与性质、等边三角形的判定与性质是解题的关键2、(1)见解析;(2)lOA,经过半径的外端并且垂直于半径的直线是圆的切线【分析】(1)根据题中给出的作图步骤完成作图即可;(2)根据切线的判定定理证明即可【详解】(1)使用直尺和圆规,依作法补全图形如图所示;(2)完成下面的证明证明:在中,直线l垂直平分OB直线l经过半径OA的外端,且lOA,直线l是的切线(经过半径的外端并且垂直于半径的直线是圆的切线) 【点睛】本题考查了做垂线,切线的判定,掌握切线的判定定理是解题的关键3、(1)见详解;(2)【分析】(1)连接OD,由圆周角定理可得AOD=ABC,从而得ODBC,进而即可得到结论;(2)连接AC,交OD于点F,利用勾股定理可得AC,再证明四边形DFCE是矩形,进而即可求解【详解】(1)证明:连接OD,是的中点,ABC=2ABD,AOD=2ABD,AOD=ABC,ODBC,是的切线;(2)连接AC,交OD于点F,AB是直径,ACB=90°,AC=,是的中点,ODAC,AF=CF=3,DF=5-4=1,E=EDF=DFC=90°,四边形DFCE是矩形,DE=CF=3,CE=DF=1,AD=CD=,ADB=90°,【点睛】本题主要考查切线的判定定理,圆周角定理以及勾股定理,添加辅助线构造直角三角形和矩形,是解题的关键4、(1)作图见解析;(2)【分析】(1)由于D点为O的切点,即可得到OC=OD,且ODAB,则可确定O点在A的角平分线上,所以应先画出A的角平分线,与BC的交点即为O点,再以O为圆心,OC为半径画出圆即可;(2)连接CD和OD,根据切线长定理,以及圆的基本性质,求出DCB的度数,然后进一步求出COD的度数,并结合三角函数求出OC的长度,再运用弧长公式求解即可【详解】解:(1)如图所示,先作A的角平分线,交BC于O点,以O为圆心,OC为半径画出O即为所求;(2)如图所示,连接CD和OD,由题意,AD为O的切线,OCAC,且OC为半径,AC为O的切线,AC=AD,ACD=ADC,CD=BD,B=DCB,ADC=B+BCD,ACD=ADC=2DCB,ACB=90°,ACD+DCB=90°,即:3DCB=90°,DCB=30°,OC=OD,DCB=ODC=30°,COD=180°-2×30°=120°,DCB=B=30°,在RtABC中,BAC=60°,AO平分BAC,CAO=DAO=30°,在RtACO中,【点睛】本题考查复杂作图-作圆,以及圆的基本性质和切线长定理等,掌握圆的基本性质,切线的性质以及灵活运用三角函数求解是解题关键5、(1)6.5米;(2)不能顺利通过,理由见解析【分析】(1)设圆心为O,连接OC,OB,拱桥的半径r米,作出相应图形,然后在RtODB中,利用勾股定理求解即可得;(2)考虑当弦长为7.8时,利用(1)中结论,可得弦心距,即可得出结论【详解】(1)如图所示,设圆心为O,连接OC,OB,拱桥的半径r米,在RtODB中,解得米;(2)当弦长为7.8时,弦心距此货船不能顺利通过此圆弧形拱桥【点睛】题目主要考查圆的基本性质,垂径定理,求弦心距,勾股定理等,理解题意,作出相应辅助线,结合性质定理是解题关键

    注意事项

    本文(2022年强化训练北师大版九年级数学下册第三章-圆章节练习试题(无超纲).docx)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开