2022年沪教版七年级数学第二学期第十五章平面直角坐标系专题测试试卷(含答案解析).docx
-
资源ID:28163588
资源大小:1.36MB
全文页数:31页
- 资源格式: DOCX
下载积分:9金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年沪教版七年级数学第二学期第十五章平面直角坐标系专题测试试卷(含答案解析).docx
七年级数学第二学期第十五章平面直角坐标系专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、点A关于y轴的对称点A1坐标是(2,-1),则点A关于轴的对称点A2坐标是()A(-1,-2)B(-2,1)C(2,1)D(2,-1)2、点在( )A第一象限B第二象限C第三象限D第四象限3、如图,A、B两点的坐标分别为A(2,2)、B(4,2),则点C的坐标为( )A(2,2)B(0,0)C(0,2)D(4,5)4、如图,在一个单位为1的方格纸上,A1A2A3,A3A4A5,A5A6A7,是斜边在x轴上,斜边长分别为2,4,6,.的等腰直角三角形若A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为()A-1008B-1010C1012D-10125、如图,在坐标系中用手盖住一点,若点到轴的距离为2,到轴的距离为6,则点的坐标是( )ABCD6、已知点M(2,3),点N与点M关于x轴对称,则点N的坐标是()A(2,3)B(2,3)C(3,2)D(2,3)7、下列各点,在第一象限的是( )ABC(2,1)D8、在平面直角坐标系中,点在( )A轴正半轴上B轴负半轴上C轴正半轴上D轴负半轴上9、在平面直角坐标系中,点A(0,3),B(2,1),经过点A的直线lx轴,C是直线l上的一个动点,当线段BC的长度最短时,点C的坐标为()A(0,1)B(2,0)C(2,1)D(2,3)10、在平面直角坐标系中,已知点P(5,5),则点P在( )A第一象限B第二象限C第三象限D第四象限第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若点与点关于原点对称,则的值为_2、在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对称,则ab_3、在平面直角坐标系中,O为坐标原点,已知:A(3,2),B(5,0),则AOB的面积为_4、点关于x轴对称的点的坐标为_5、在平面直角坐标系中,与点关于原点对称的点的坐标是_三、解答题(10小题,每小题5分,共计50分)1、(1)如图所示,图中的两个三角形关于某点对称,请找出它们的对称中心O(2)如图所示,已知ABC的三个顶点的坐标分别为A(4,1),B(1,1),C(3,2)将ABC绕原点O旋转180°得到A1B1C1,请画出A1B1C1,并写出点A1的坐标2、如图,ABC顶点的坐标分别为A(1,1),B(4,1),C(3,4)将ABC绕点A逆时针旋转90°后,得到AB1C1在所给的直角坐标系中画出旋转后的AB1C1,并直接写出点B1、C1的坐标:B1( , );C1( , )3、如图,在直角坐标系中按要求作图,所画图形的顶点必须与每个小正方形的顶点重合(1)画出一个面积等于9的等腰直角三角形ABC,使ABC的三个顶点在坐标轴上,且ABC关于y轴对称,其中点A的坐标为(0,3);(点B在点C的左侧)(2)将ABC向下平移3个单位,再向右平移1个单位得到A1B1C1(点A、B、C的对应点分别为点A1、B1、C1),画出A1B1C1,并直接写出A1C的长4、如图,ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3)(1)请画出ABC关于y轴对称的A1B1C1,并写出点A1的坐标;(2)请画出ABC绕点B顺时针旋转90°后的A2BC2;(3)求出(2)中A2BC2的面积5、如图是某地火车站及周围的简单平面图(图中每个小正方形的边长代表1千米)(1)请以火车站所在的位置为坐标原点,以图中小正方形的边长为单位长度,建立平面直角坐标系,并写出体育场A、超市B、市场C、文化宫D的坐标;(2)在(1)中所建的坐标平面内,若学校E的位置是(3,3),请在图中标出学校E的位置6、如图,在平面直角坐标系中,已知A(1,4)、B(3,1)、C(3,5),ABC关于y轴的对称图形为A1B1C1 (1)请画出ABC关于y轴对称图形A1B1C1,并写出三个顶点的坐标A1( ), B1( ),C1( )(2)在y轴上取点D,使得ABD为等腰三角形,这样的点D共有 个7、已知:如图,在平面直角坐标系中(1)作出ABC关于y轴对称的A1B1C1,并写出A1B1C1三个顶点的坐标:A1( ),B1( ),C1( );(2)直接写出ABC的面积为 ;(3)在x轴上画点P,使PA+PC最小8、如图1,A(2,6),C(6,2),ABy轴于点B,CDx轴于点D(1)求证:AOBCOD;(2)如图2,连接AC,BD交于点P,求证:点P为AC中点;(3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EFEFCE且EFCE,点G为AF中点连接EG,EO,求证:OEG45°9、(探索发现)等腰RtABC中,BAC90°,ABAC,点A、B分别是y轴、x轴上两个动点, 直角边 AC 交x轴于点D,斜边BC交y轴于点E(1)如图1,已知C点的横坐标为1,请直接写出点A的坐标 (2)如图2,当等腰RtABC运动到使点D恰为AC中点时,连接DE,求证:ADBCDE(拓展应用)(3)如图3,若点A在x轴上,且A(4,0),点B在y轴的正半轴上运动时,分别以OB、 AB为直角边在第一、二象限作等腰直角BOD和等腰直角ABC,连接CD交y轴于点P,当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化请说明理由,若不变化,请直接写出BP的长度为 10、如图,在平面直角坐标系中,的三个顶点都在格点上,点的坐标为,请回答下列问题(1)画出关于x轴对称的,并写出点的坐标(_,_)(2)点P是x轴上一点,当的长最小时,点P坐标为_;(3)点M是直线BC上一点,则AM的最小值为_-参考答案-一、单选题1、B【分析】由题意由对称性先求出A点坐标,再根据对称性求出点关于轴的对称点坐标【详解】解:由点关于轴的对称点坐标是,可知A为,则点关于轴的对称点坐标是故选B【点睛】本题考查对称性,利用点关于轴对称,横轴坐标变为相反数,纵轴坐标不变以及点关于轴对称,纵轴坐标变为相反数,横轴坐标不变进行分析2、C【分析】根据各象限内点的坐标特征解答【详解】解:点的横坐标小于0,纵坐标小于0,点所在的象限是第三象限故选:C【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,);第二象限(,);第三象限(,);第四象限(,)3、B【分析】根据A、B两点的坐标建立平面直角坐标系即可得到C点坐标【详解】解:A点坐标为(-2,-2),B点坐标为(4,-2),可以建立如下图所示平面直角坐标系,点C的坐标为(0,0),故选B【点睛】本题主要考查了写出坐标系中点的坐标,解题的关键在于能够根据题意建立正确的平面直角坐标系4、C【分析】首先确定角码的变化规律,利用规律确定答案即可【详解】解:各三角形都是等腰直角三角形,直角顶点的纵坐标的长度为斜边的一半,A3(0,0),A7(2,0),A11(4,0),2021÷4=505余1,点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,A2021的坐标为(1012,0)故选:C【点睛】本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键5、C【分析】首先根据P点在第四象限,可以确定P点横纵坐标的符号,再由P到坐标轴的距离即可确定P点坐标【详解】解:P点在第四象限,P点横坐标大于0,纵坐标小于0,P点到x轴的距离为2,到y轴的距离为6,P点的坐标为(6,-2),故选C【点睛】本题主要考查了点所在的象限的坐标特征,点到坐标轴的距离,解题的关键在于能够熟练掌握第四象限点的坐标特征6、D【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接得到答案【详解】点M(2,3),点N与点M关于x轴对称,点N的坐标是(2,3),故选:D【点睛】本题考查了坐标轴中轴对称变化,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数7、C【分析】由题意根据各象限内点的坐标特征逐项进行分析判断即可【详解】解:、在第四象限,故本选项不合题意;、在第二象限,故本选项不合题意;、在第一象限,故本选项符合题意;、在第三象限,故本选项不合题意;故选:C【点睛】本题考查各象限内点的坐标的符号特征,熟练掌握各象限内点的坐标的符号是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)8、B【分析】依据坐标轴上的点的坐标特征即可求解【详解】解:点(,),纵坐标为点(,)在x轴负半轴上故选:B【点睛】本题考查了点的坐标:坐标平面内的点与有序实数对是一一对应的关系;解题时注意:x轴上点的纵坐标为,y轴上点的横坐标为9、D【分析】根据垂线段最短可知BCl,即BCx轴,由已知即可求解【详解】解:点A(0,3),经过点A的直线lx轴,C是直线l上的一个动点,点C的纵坐标是3,根据垂线段最短可知,当BCl时,线段BC的长度最短,此时, BCx轴,B(2,1),点C的横坐标是2,点C坐标为(2,3),故选:D【点睛】本题考查坐标与图形、垂线段最短,熟知图形与坐标的关系,掌握垂线段最短是解答的关键10、D【分析】根据各象限内点的坐标特征解答即可【详解】解:点P(5,-5)的横坐标大于0,纵坐标小于0,所以点P所在的象限是第四象限故选:D【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)二、填空题1、-4【分析】根据关于原点对称的点的横坐标和纵坐标都互为相反数解答【详解】解:由点与点关于原点对称,可得n1,故答案为:4【点睛】本题考查了关于原点对称的点的坐标的特征:横坐标和纵坐标都互为相反数2、-1【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案【详解】解:点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,a4,b-3,则ab-4+3=-1故答案为:1【点睛】此题主要考查了关于原点对称点的性质,正确得出a,b的值是解题关键3、5【分析】首先在坐标系中标出A、B两点坐标,由于B点在x轴上,所以面积较为容易计算,根据三角形面积的计算公式,即可求出AOB的面积【详解】解:如图所示,过A点作AD垂直x轴于D点,则h=2,故答案为:5【点睛】本题主要考查的是坐标系中三角形面积的求法,需要准确对点位进行标注,并根据公式进行求解即可4、 (-2,-5)【分析】关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解【详解】解:由点关于轴对称点的坐标为:,故答案为:【点睛】本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键5、(-3,-1)【分析】由题意直接根据两个点关于原点对称时,它们的坐标符号相反进行分析即可得出答案.【详解】解:在平面直角坐标系中,与点关于原点对称的点的坐标是(-3,-1).故答案为:(-3,-1).【点睛】本题考查的是关于原点的对称的点的坐标,注意掌握平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数三、解答题1、(1)见解析;(2)画图见解析,点A1的坐标为(-4,1)【分析】(1)根据对称中心的性质可得对应点连线的交点即为对称中心;(2)根据题意作出A,B,C绕原点O旋转180°得到的点A1,B1,C1,然后顺次连接A1,B1,C1即可,根据点A1的在平面直角坐标系中的位置即可求得坐标【详解】(1)如图所示,点O即为要求作的对称中心(2)如图所示,A1B1C1即为要求作的三角形,由点A1的在平面直角坐标系中的位置可得,点A1的坐标为(-4,1)【点睛】此题考查了平面直角坐标系中的几何旋转作图,中心对称的性质,解题的关键是熟练掌握中心对称的性质2、画图见解析;B1(1,2);C1(4,1)【分析】图形绕点A逆时针旋转90°,将AB,AC逆时针旋转90°,得到,连接, 利用网格特点和旋转的性质得出点B1、C1的坐标,从而得到AB1C1【详解】如图所示,AB1C1为所作,B1点的坐标为(1,2),C1点的坐标为(4,1)故答案为(1,2),(4,1)【点睛】本题考察了绕某点画旋转图形以及求点坐标,首先找到旋转的点,根据旋转角度和网格特征,即可得到对应坐标点3、(1)见解析;(2)画图见解析,A1C的长为4【详解】解:(1)如图,ABC即为所求AO=BO=CO=3,且AOBC,BAO=CAO=45°,ABC的面积=BCAO=9,BAC=90°,且ABC关于y轴对称;(2)如图,A1B1C1即为所求如图,A1C的长为4【点睛】本题考查了根据平移变换作图以及等腰直角三角形的判定和性质,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接4、(1)见解析,(2,4);(2)见解析;(3)3.5【分析】(1)利用关于y轴对称的点的坐标特征写出A、B、C的对应点A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出A、C的对应点A2和C2即可;(3)用一个矩形的面积分别减去三个直角三角形的面积去计算A2BC2的面积【详解】解:(1)如图,A1B1C1为所作,点A1的坐标为(2,4);(2)如图,A2BC2为所作;(3)A2BC2的面积3×3×3×1×2×1×3×23.5【点睛】本题考查了作图旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形也考查了轴对称变换5、(1)见解析,体育场A的坐标为(4,3)、超市B的坐标为(0,4)、市场C的坐标为(4,3)、文化宫D的坐标为(2,3);(2)见解析【分析】(1)以火车站所在的位置为坐标原点,建立平面直角坐标系,即可表示出体育场A、超市B市场C、文化宫D的坐标(2)根据点的坐标的意义描出点E【详解】解:(1)平面直角坐标系如图所示,体育场A的坐标为(4,3)、超市B的坐标为(0,4)、市场C的坐标为(4,3)、文化宫D的坐标为(2,3)(2)如图,点E即为所求【点睛】本题考查了坐标确定位置,主要是对平面直角坐标系的定义和点的坐标的写法的考查,是基础题6、(1)见解析;-1,4 ;-3,1;-3,5;(2)5【分析】(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(2)分AB为腰和AB为底分别求解可得【详解】解:(1)如图所示,A1B1C1即为所求A1(-1,4) ;B1(-3,1);C1(-3,5);故答案为:-1,4 ;-3,1;-3,5;(2)以点A为顶点、AB为腰的等腰三角形ABD,且点D在y轴上的有2个;以点B为顶点,BA为腰的等腰ABD,且点D在y轴上的有2个;以AB为底边的等腰三角形,且点D在y轴上的点只有1个;所以这样的点D共有5个,故答案为:5【点睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质,并据此得出变换后的对应点7、(1)作图见解析,(0,2),(2,4),(4,1);(2)5;(3)见解析【分析】(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用ABC所在长方形面积减去周围三角形面积进而得出答案;(3)先确定A关于轴的对称点,再连接交轴于则此时满足要求【详解】解:(1)如图所示:A1B1C1即为所求,A1(0,2),B1(2,4),C1(4,1);故答案为:(0,2),(2,4),(4,1);(2)ABC的面积为:12×1×4×2×2×2×35;故答案为:5;(3)如图所示:点P即为所求【点睛】本题考查的是轴对称的作图,坐标与图形,掌握“利用轴对称确定线段和取最小值时点的位置”是解本题的关键.8、(1)见解析;(2)见解析;(3)见解析【分析】(1)根据即可证明;(2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;(3)延长到,使,连接,延长交于点,根据证明,得出,故,由平行线的性质得出,进而推出,根据证明,故,即可证明【详解】(1)轴于点,轴于点,;(2)如图2,过点作轴,交于点,轴, 在与中,即点为中点;(3)如图3,延长到,使,连接,延长交于点,即【点睛】本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键9、(1)A(0,1);(2)见解析;(3)不变,2【分析】(1)如图(1),过点C作CFy轴于点F,构建全等三角形:ACFBAO(AAS),结合该全等三角形的对应边相等易得OA的长度,由点A是y轴上一点可以推知点A的坐标;(2)过点C作CGAC交y轴于点G,则ACGBAD(ASA),即得CG=AD=CD,ADB=G,由DCE=GCE=45°,可证DCEGCE(SAS)得CDE=G,从而得到结论;(3)BP的长度不变,理由如下:如图(3),过点C作CHy轴于点H,构建全等三角形:CBHBAO(AAS),结合全等三角形的对应边相等推知:CH=BO,BH=AO=4再结合已知条件和全等三角形的判定定理AAS得到:CPHDPB,故BP=HP=2【详解】解:(1)如图(1),过点C作CFy轴于点F,CFy轴于点F,CFA=90°,ACF+CAF=90°,CAB=90°,CAF+BAO=90°,ACF=BAO,在ACF和ABO中,ACFBAO(AAS),CF=OA=1,A(0,1);(2)如图2,过点C作CGAC交y轴于点G,CGAC,ACG=90°,CAG+AGC=90°,AOD=90°,ADO+DAO=90°,AGC=ADO,在ACG和ABD中,ACGBAD(AAS),CG=AD=CD,ADB=AGC,ACB=45°,ACG=90°,DCE=GCE=45°,在DCE和GCE中,DCEGCE(SAS),CDE=AGC,ADB=CDE;(3)BP的长度不变,理由如下:如图,过点C作CHy轴于点H ABC=90°,CBH+ABO=90°BAO+ABO=90°,CBH=BAOCHB=AOB=90°,AB=AC,CBHBAO(AAS),CH=BO,BH=AO=4BD=BO,CH=BDCHP=DBP=90°,CPE=DPB,CPHDPB(AAS),BP=HP=2故答案为:2【点睛】本题考查了三角形综合题主要利用了全等三角形的性质定理与判定定理,解决本题的关键是作出辅助线,构建全等三角形10、(1)5,-3;(2)(,0);(3)【分析】(1)利用关于x轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)连接BC1交x轴于点P,利用两点之间线段最短可判断P点满足条件,利用待定系数法求得直线BC1的解析式,即可求解;(3)利用割补法求得ABC的面积,利用两点之间的距离公式求得BC的长,再利用面积法即可求解【详解】解:(1)如图,A1B1C1为所作,点C1的坐标为(5,-3);故答案为:5,-3;(2)如图,点P为所作设直线BC1的解析式为y=kx+b,点C1的坐标为(5,-3),点B的坐标为(1,2),解得:,直线BC1的解析式为y=x+,当y=0时,x=,点P的坐标为(,0);故答案为:(,0);(3)根据垂线段最短,当AM垂直BC时,垂线段AM取得最小值,ABC的面积为2×4-×2×1-×4×1-×3×1=;BC=,××AM=,AM=故答案为:【点睛】本题考查了作图-轴对称变换:几何图形都可看作是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的也考查了最短路径问题注意:关于x轴对称的点,横坐标相同,纵坐标互为相反数