2022年最新强化训练北师大版七年级数学下册第五章生活中的轴对称专项攻克练习题(无超纲).docx
-
资源ID:28163593
资源大小:506.49KB
全文页数:20页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年最新强化训练北师大版七年级数学下册第五章生活中的轴对称专项攻克练习题(无超纲).docx
七年级数学下册第五章生活中的轴对称专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的为格点三角形,在图中与成轴对称的格点三角形可以画出( )A6个B5个C4个D3个2、下列说法正确的是()A如果两个三角形全等,则它们必是关于某条直线成轴对称的图形B如果两个三角形关于某条直线成轴对称,那么它们是全等三角形C等腰三角形是关于一条边上的中线成轴对称的图形D一条线段是关于经过该线段中点的直线成轴对称图形3、下列图形不是轴对称图形的是( )ABCD4、下列图形是轴对称图形的是( )ABCD5、下列图案是轴对称图形的是()ABCD6、下面所给的银行标志图中是轴对称图形的是( )ABCD7、下列图形中,不是轴对称图形的是()ABCD8、如图,正方形网格中, A,B两点均在直线a上方,要在直线a上求一点P,使PAPB的值最小,则点P应选在( )AC点BD点CE点DF点9、如图,下列图形中,轴对称图形的个数是()A1个B2个C3个D4个10、如图所示,把一个正方形三次对折后沿虚线剪下,则所得图形是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将一张长方形纸片按如图所示的方式折叠,BE、BD为折痕若与重合,则EBD为_度2、如图,在中,将沿折叠,使得点恰好落在边上的点处,折痕为,若点为上一动点,则的周长最小值为_3、如图,将长方形沿折叠,点落在边上的点处,点落在点处,若,则等于_(用含的式子表示)4、下列图案是轴对称图形的有 _个5、如图,直线AD为ABC的对称轴,BC=6,AD=4,则图中阴影部分的面积为_三、解答题(5小题,每小题10分,共计50分)1、如图,在3×3的正方形的网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的ABC为格点三角形,在图中画出格点A'B'C'与ABC成轴对称,且点A,B,C的对称点分别为点A',B',C'例如,图1、图2中的格点A'B'C'与ABC成轴对称,请你在图3、图4、图5、图6中各画出一种格点A'B'C',使各图中的A'B'C'与ABC对称形式不同2、在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形图中是一个格点三角形.请在图1和图2中各画出一个与成轴对称的格点三角形,并画出对称轴3、如图,在正方形网格中,每个小正方形的边长都是1,每个小正方形的顶点叫做格点网格中有一个格点ABC(即三角形的顶点都在格点上)(1)在图中画出A1B1C1,使它与ABC关于直线l对称;(2)在直线l上找一点P,使得PA+PC最小;(3)ABC的面积为 4、如图,正方形网格中每个小正方形边长都是1,画出关于直线对称的5、如图,是由三个阴影的小正方形组成的图形,请你在三个网格图中,各补画出一个有阴影的小正方形,使补画后的图形(阴影部分)为轴对称图形,并画出它的对称轴-参考答案-一、单选题1、A【分析】直接利用轴对称图形的性质分别得出符合题意的答案【详解】解:符合题意的三角形如图所示:分三类对称轴为横向:对称轴为纵向:对称轴为斜向:满足要求的图形有6个故选:A【点睛】本题主要考查利用轴对称来设计轴对称图形,关键是要掌握轴对称的性质和轴对称图形的含义2、B【分析】根据全等三角形的定义以及轴对称的性质可判断选项A和B;根据等腰三角形的性质可判断选项C;根据线段的性质可判断选项D【详解】解:A如果两个三角形全等,则它们不一定关于某条直线成轴对称的图形,故本选项不合题意;B如果两个三角形关于某条直线成轴对称,那么它们是全等三角形,说法正确,故本选项符合题意;C等腰三角形是以底边中线所在直线为对称轴的轴对称图形或者说等腰三角形被中线所在直线分成的两个三角形成轴对称,故本选项不合题意;D一条线段是关于经过该线段中点且和线段垂直的直线成轴对称的图形,故本选项不合题意;故选:B【点睛】本题考查了轴对称的性质,全等三角形的性质,线段垂直平分线的性质,等腰三角形的性质,关键是掌握性质进行逐一判断3、B【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可【详解】选项A、C、D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,选项B不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,故选:B【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴位置4、C【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可【详解】解:选项A、B、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项C能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:D【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴位置5、D【分析】根据轴对称图形的定义,即是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形叫轴对称图形判断即可;【详解】由已知图形可知, 是轴对称图形;故选D【点睛】本题主要考查了轴对称图形的识别,准确分析判断是解题的关键6、B【分析】根据轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,逐项分析判断即可【详解】解:A.不是轴对称图形,故该选项不正确,不符合题意;B.是轴对称图形,故该选项正确,符合题意;C. 不是轴对称图形,故该选项不正确,不符合题意;D. 不是轴对称图形,故该选项不正确,不符合题意;故选B【点睛】本题考查了轴对称图形的识别,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合7、A【详解】解:A、不是轴对称图形,故本选项符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意;故选:A【点睛】本题主要考查了轴对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形是解题的关键8、C【分析】取A点关于直线a的对称点G,连接BG与直线a交于点E,点E即为所求【详解】解:如图所示,取A点关于直线a的对称点G,连接BG与直线a交于点E,点E即为所求,故选C【点睛】本题主要考查了轴对称最短路径问题,解题的关键在于能够熟练掌握轴对称最短路径的相关知识9、B【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形进行判断即可【详解】解:第一个图形不是轴对称图形;第二个图形是轴对称图形;第三个图形是轴对称图形;第四个图形不是轴对称图形;轴对称图形有2个,故选B【点睛】本题主要考查了轴对称图形,解题的关键在于能够熟练掌握轴对称图形的定义10、A【分析】根据剪下的图形为等腰直角三角形,展开后为正方形,可知剪去的仍为正方形,由此即知答案【详解】由题意知,剪下的图形为等腰直角三角形,展开后为正方形,所以剪去的为正方形,原图为正方形,其还原的过程如下:故选:A【点睛】本题考查了图形的折叠及裁剪,关键是根据折叠后裁剪的过程还原,对学生的想象能力有更高的要求二、填空题1、90【分析】根据折叠的性质和平角的定义即可得到结论【详解】解:由折叠可知,ABE=A'BE=ABA,CBD=C'BD=CBC,DBE=A'BE+C'BD=ABA+CBC=(ABA'+CBC')=×180°=90°故答案为:90【点睛】本题考查了角的计算,折叠的性质,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系2、7【分析】根据折叠可知B和E关于AD对称,由对称的性质得出当F和D重合时,EF+FC的值最小,即此时的周长最小,最小值是EF+FC+EC=BD+CD+EC,先求出EC长,代入求出即可【详解】解:连接BF由题可知B和E关于AD对称,AB=AE=4,BF=FECFE的周长为:EF+FC+EC=BF+CD+EC当F和D重合时,BF+CD= BC两点之间线段最短此时BF+CD的值最小,即此时CFE的周长最小,最小值是EF+FC+EC=BD+CD+EC=BC+EC,EC=AC-AE=6-4=2,的周长最小值为:BC+EC=5+2=7,故答案为:7【点睛】本题考查了折叠性质,轴对称最短路线问题,关键是确定点F的位置3、【分析】根据折叠得出DEF=HEF,EFG=EFC,求出DEF的度数,根据平行线的性质得出DEF+EFC=180°,BFE=DEF,代入即可求出EFG,进而求出BFG【详解】解:将长方形ABCD沿EF折叠,点D落在AB边上的H点处,点C落在点G处,DEF=HEF,EFG=EFC,AEH=m°,DEF=HEF=(180°-AEH)=(180°-m°),四边形ABCD是长方形,ADBC,EHFG,DEF+EFC=180°,BFE=DEF=(180°-m°),EFG=EFC=180°-(180°-m°)=90°+m°,BFG=EFG-BFE=90°+m°-(180°-m°)=m°,故答案为:m【点睛】本题考查了平行线的性质,折叠的性质等知识点,根据平行线的性质求出BFE=DEF和DEF+EFC=180°是解此题的关键4、2【分析】根据轴对称图形的概念求解,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴【详解】解:第一幅图,是轴对称图形;第二幅图不是轴对称图形;第三幅图是轴对称图形;第四幅图不是轴对称图形;故答案为:2【点睛】此题主要考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合5、6【分析】根据轴对称的性质判断出阴影部分的面积的和等于三角形的面积的一半,ADBC,然后根据三角形的面积列式计算即可得解【详解】解:AD所在的直线是ABC的对称轴,阴影部分的面积的和等于三角形的面积的一半,ADBC,阴影部分的面积和=×(×6×4)=6故答案为:6【点睛】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等三、解答题1、见解析【分析】根据网格结构分别确定出不同的对称轴,然后作出轴对称三角形即可得解【详解】解:如图,A'B'C'即为所求【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题难点在于确定出不同的对称轴2、见解析【分析】根据网格结构分别确定出不同的对称轴,然后作出成轴对称的三角形即可得解;【详解】与成轴对称的格点三角形如图所示:即为所求【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题难点在于确定出不同的对称轴3、(1)见解析;(2)见解析;(3)5【分析】(1)分别作出点A,B,C关于y轴的对称点,再顺次连接即可得;(2)连接AC1,与直线l的交点即为所求;(3)利用割补法求解可得【详解】解:(1)如图所示,A1B1C1即为所求(2)连接AC1,则AC1与l的交点P即为所求的点(3)ABC的面积=3×4×1×4×2×2×2×35,故答案为:5【点睛】此题主要作图轴对称变换,关键是正确确定组成图形的关键点的对称点位置及轴对称变换的性质,割补法求三角形的面积4、见解析【分析】先分别画出点A、B、C关于直线l的对称点,然后顺次连接即可【详解】解:如图,为所作:【点睛】本题考查了作图-轴对称变换:几何图形都可看作是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的5、见解析【分析】根据轴对称的概念作答,如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形【详解】解:所补画的图形如下所示:【点睛】本题考查利用轴对称设计图案的知识,难度不大,注意掌握轴对称的概念是关键