2022年沪科版九年级数学下册第24章圆定向测试试题(含解析).docx
-
资源ID:28163625
资源大小:599.41KB
全文页数:25页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年沪科版九年级数学下册第24章圆定向测试试题(含解析).docx
沪科版九年级数学下册第24章圆定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列四个图案中,是中心对称图形的是()ABCD2、下列图形中,是中心对称图形也是轴对称图形的是()ABCD3、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( )A20°B25°C30°D40°4、如图,在ABC中,CAB=64°,将ABC在平面内绕点A旋转到ABC的位置,使CCAB,则旋转角的度数为( )A64°B52°C42°D36°5、某村东西向的废弃小路/两侧分别有一块与l距离都为20 m的宋代碑刻A,B,在小路l上有一座亭子P A,P分别位于B的西北方向和东北方向,如图所示该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小人工湖建成后,亭子P到湖岸的最短距离是( )A20 mB20mC(20 - 20)mD(40 - 20)m6、往直径为78cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为( )A36 cmB27 cmC24 cmD15 cm7、已知O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与O的位置关系是( )A相离B相切C相交D相交或相切8、已知O的半径为4,点P 在O外部,则OP需要满足的条件是( )AOP>4B0OP<4COP>2D0OP<29、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积( )A不变B面积扩大为原来的3倍C面积扩大为原来的9倍D面积缩小为原来的10、在圆内接四边形ABCD中,A、B、C的度数之比为2:4:7,则B的度数为( )A140°B100°C80°D40°第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知A的半径为5,圆心A(4,3),坐标原点O与A的位置关系是_2、点(2,-3)关于原点的对称点的坐标为_3、已知一个扇形的半径是1,圆心角是120°,则这个扇形的面积是_4、龙湖实验中学的操场有4条等宽的跑道,每条跑道是由两条直跑道和两个半圆形弧道连接而成,请根据小泓与瞿老师的对话计算每条跑道的宽度是_米5、如图,在平面直角坐标系中,一次函数y2x4的图像与x轴、y轴分别交于点A、B,将直线AB绕点B顺时针旋转45°,交x轴于点C,则直线BC的函数表达式为_三、解答题(5小题,每小题10分,共计50分)1、如图,在RtABC中,B90°,BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的O经过点D(1)求证:BC是O的切线;(2)若点F是劣弧AD的中点,且CE3,试求阴影部分的面积2、如图,四边形ABCD内接于O,AC是直径,点C是劣弧BD的中点(1)求证:(2)若,求BD3、如图,在ABC中,ACB=90°,AC=BC,D是AB边上一点(与A、B不重合),连接CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连接DE、BE(1)求证:ACDBCE;(2)若BE=5,DE=13,求AB的长4、在平面直角坐标系中,的三个顶点坐标分别为(每个方格的边长均为1个单位长度)(1)画出关于原点对称的图形,并写出点的坐标;(2)画出绕点O逆时针旋转后的图形,并写出点的坐标;(3)写出经过怎样的旋转可直接得到(请将20题(1)(2)小问的图都作在所给图中)5、如图,在RtABC中,BAC = 90°,AB = k·AC,ADE是由ABC绕点A逆时针旋转某个角度得到的,BC与DE交于点F,直线BD与EC交于点G(1)求证:BD = k·EC;(2)求CGD的度数;(3)若k = 1(如图),求证:A,F,G三点在同一直线上-参考答案-一、单选题1、A【分析】中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可【详解】解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,故选:A【点睛】本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键2、C【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出【详解】解:A、不是轴对称图形,是中心对称图形,故A选项不符合题意;B、是轴对称图形,不是中心对称图形,故B选项不符合题意;C、既是轴对称图形,又是中心对称图形,故C选项符合题意;D、是轴对称图形,但不是中心对称图形,故D选项不符合题意故选:C【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合3、B【分析】连接OA,如图,根据切线的性质得PAO=90°,再利用互余计算出AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算B的度数【详解】解:连接OA,如图,PA是O的切线,OAAP,PAO=90°,P=40°,AOP=50°,OA=OB,B=OAB,AOP=B+OAB,B=AOP=×50°=25°故选:B【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系4、B【分析】先根据平行线的性质得ACC=CAB=64°,再根据旋转的性质得CAC等于旋转角,AC=AC,则利用等腰三角形的性质得ACC=ACC=64°,然后根据三角形内角和定理可计算出CAC的度数,从而得到旋转角的度数【详解】解:CCAB,ACC=CAB=64°ABC在平面内绕点A旋转到ABC的位置,CAC等于旋转角,AC=AC,ACC=ACC=64°,CAC=180°-ACC-ACC=180°-2×64°=52°,旋转角为52°故选:B【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等5、D【分析】根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可【详解】人工湖面积尽量小,圆以AB为直径构造,设圆心为O,过点B作BC ,垂足为C,A,P分别位于B的西北方向和东北方向,ABC=PBC=BOC=BPC=45°,OC=CB=CP=20,OP=40,OB=,最小的距离PE=PO-OE=40 - 20(m),故选D【点睛】本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键6、C【分析】连接,过点作于点,交于点,先由垂径定理求出的长,再根据勾股定理求出的长,进而得出的长即可【详解】解:连接,过点作于点,交于点,如图所示:则,的直径为,在中,即水的最大深度为,故选:C【点睛】本题考查了垂径定理、勾股定理等知识,解题的关键是根据题意作出辅助线,构造出直角三角形是解答此题的关键7、B【分析】圆的半径为 圆心O到直线l的距离为 当时,直线与圆相切,当时,直线与圆相离,当时,直线与圆相交,根据原理直接作答即可.【详解】解: O的直径为10cm,圆心O到直线l的距离为5cm, O的半径等于圆心O到直线l的距离, 直线l与O的位置关系为相切,故选B【点睛】本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.8、A【分析】点在圆外,则点与圆心的距离大于半径,根据点与圆的位置关系解答【详解】解:O的半径为4,点P 在O外部,OP需要满足的条件是OP>4,故选:A【点睛】此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键9、A【分析】设原来扇形的半径为r,圆心角为n,则变化后的扇形的半径为3r,圆心角为,利用扇形的面积公式即可计算得出它们的面积,从而进行比较即可得答案【详解】设原来扇形的半径为r,圆心角为n,原来扇形的面积为,扇形的半径扩大为原来的3倍,圆心角缩小为原来的,变化后的扇形的半径为3r,圆心角为,变化后的扇形的面积为,扇形的面积不变故选:A【点睛】本题考查了扇形面积,熟练掌握并灵活运用扇形面积公式是解题关键10、C【分析】,进而求解的值【详解】解:由题意知故选C【点睛】本题考查了圆内接四边形中对角互补解题的关键在于根据角度之间的数量关系求解二、填空题1、在A上【分析】先根据两点间的距离公式计算出OA,然后根据点与圆的位置关系的判定方法判断点O与A的位置关系【详解】解:点A的坐标为(4,3),OA=5,半径为5,OA=r,点O在A上故答案为:在A上【点睛】本题考查了点与圆的位置关系:点与圆的位置关系有3种设O的半径为r,点P到圆心的距离OP=d,当点P在圆外dr;当点P在圆上d=r;当点P在圆内dr2、 (-2,3)【分析】根据“关于原点对称的点的坐标关系,横坐标与纵坐标都互为相反数”,即可求解【详解】点(2,-3)关于原点的对称点的坐标是(-2,3) 故答案为: (-2,3)【点睛】本题主要考查点关于原点对称,解决本题的关键是要熟练掌握关于原点对称点的坐标的关系3、【分析】根据圆心角为的扇形面积是进行解答即可得【详解】解:这个扇形的面积故答案是:【点睛】本题考查了扇形的面积,解题的关键是掌握扇形的面积公式4、【分析】设跑道的宽为米,根据直道长度一样,外圈与内圈的差是两个圆周长的差,列出式子求解即可【详解】解:设跑道的宽为米,由对称性设内圈两个半圆形弧道拼成的圆的半径为,根据题意可得:,解得:,故答案是:【点睛】本题考查了圆的基本概念,一元一次方程,解题的关键是根据题意列出等式求解5、#【分析】先求出点A、B的坐标,过点A作AFAB,交直线BC于点F,过点F作EFx轴,垂足为E,然后由全等三角形的判定和性质,等腰直角三角形的性质,求出点F的坐标,再利用待定系数法,即可求出答案【详解】解:一次函数y2x4的图像与x轴、y轴分别交于点A、B两点,令,则;令,则,点A为(2,0),点B为(0,4),;过点A作AFAB,交直线BC于点F,过点F作EFx轴,垂足为E,如图,ABF是等腰直角三角形,AF=AB,ABOFAE(AAS),AO=FE,BO=AE,点F的坐标为(,);设直线BC为,则,解得:,直线BC的函数表达式为;故答案为:;【点睛】本题考查了一次函数的性质,全等三角形的判定和性质,等腰三角形的判定和性质,以及旋转的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题三、解答题1、(1)见解析;见解析;(2)【分析】(1)连接OD,由角平分线的性质解得,再根据内错角相等,两直线平行,证明,继而由两直线平行,同旁内角互补证明即可解题;连接DE,由弦切角定理得到,再证明,由相似三角形对应边成比例解题;(2)证明是等边三角形,四边形DOAF是菱形,结合扇形面积公式解题【详解】解:(1)连接OD,是BAC的平分线是O的切线;连接DE,是O的切线,是直径(2)连接DE、OD、DF、OF,设圆的半径为R,点F是劣弧AD的中点,OF是DA中垂线DF=AF,是等边三角形,四边形DOAF是菱形,【点睛】本题考查圆的综合题,涉及切线的判定与性质、平行四边形的性质、等边三角形的判定与性质、相似三角形的判定与性质、扇形面积等知识,综合性较强,有难度,掌握相关知识是解题关键2、(1)见详解;(2)【分析】(1)由题意及垂径定理可知AC垂直平分BD,进而问题可求解;(2)由题意易得,然后由(1)可知ABD是等边三角形,进而问题可求解【详解】(1)证明:AC是直径,点C是劣弧BD的中点,AC垂直平分BD,;(2)解:,ABD是等边三角形,【点睛】本题主要考查垂径定理、等边三角形的性质与判定及圆周角定理,熟练掌握垂径定理、等边三角形的性质与判定及圆周角定理是解题的关键3、(1)见解析;(2)17【分析】(1)由旋转的性质可得CDCE,DCE90°ACB,由“SAS”可证ACDBCE;(2)由ACB90°,ACBC,可得CABCBA45°,再由ACDBCE,得到BEAD=5,CBECAD45°,则ABEABC+CBE90°,然后利用勾股定理求出BD的长即可得到答案【详解】解:(1)证明:将线段CD绕点C按逆时针方向旋转90°得到线段CE,CDCE,DCE90°ACB,ACD+BCD=BCE+BCD,即ACDBCE,在ACD和BCE中,ACDBCE(SAS);(2)ACB90°,ACBC,CABCBA45°,ACDBCE,BEAD=5,CBECAD45°,ABEABC+CBE90°,AB=AD+BD=17【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,证明三角形全等是解题的关键4、(1)见解析,;(2)见解析,(3)绕点O顺时针时针旋转【分析】(1)根据题意得:关于原点的对称点为 ,再顺次连接,即可求解;(2)根据题意得:绕点O逆时针旋转后的对称点为 ,再顺次连接;(3)根据题意得:绕点O顺时针时针旋转后可直接得到,即可求解(1)解:根据题意得:关于原点的对应点为 ,画出图形如下图所示:(2)解:根据题意得:绕点O逆时针旋转后的对应点为 ,画出图形如下图所示:(3)解:根据题意得:绕点O顺时针时针旋转后可直接得到【点睛】本题主要考查了图形的变换画关于原点对称,绕原点旋转后图形,得到图形关于原点对称,绕原点旋转后对应点的坐标是解题的关键5、(1)见解析;(2)90°;(3)见解析【分析】(1)由旋转的性质可得对应边相等对应角相等,由相似三角形的判定得出ABDACE,由相似三角形的性质即可得出结论 ;(2)由(1)证得ABDACE,和等腰三角形的性质得出,进而推出,由四边形的内角和定理得出结论;(3)连接CD,由旋转的性质和等腰三角形的性质得出,CGDG,FCFD,由垂直平分线的判断得出A,F,G都在CD的垂直平分线上,进而得出结论【详解】证明:(1)ADE是由ABC绕点A逆时针旋转某个角度得到的,ABAD,ACAE,BADCAE,ABDACE,AB = k·AC,BD = k·EC;(2)由(1)证得ABDACE,ABAD,ACAE,BAC = 90°,在四边形ADGE中,BAC = 90°,CGD360°180°90°90°;(3)连接CD,如图:ADE是由ABC绕点A逆时针旋转某个角度得到的,BAC = 90°,AB = k·AC,当k = 1时,ABC和ADE为等腰直角三角形,CGDG,FCFD,点A、点G和点F在CD的垂直平分线上, A,F,G三点在同一直线上【点睛】本题考查了相似三角形的性质和判定,旋转的性质,等腰直角三角形的性质和判定,垂直平分线的判定等知识点,熟练掌握相似三角形的判定和垂直平分线的判定是解题的关键