欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年最新沪科版九年级数学下册第24章圆专题练习试题(含答案及详细解析).docx

    • 资源ID:28163697       资源大小:1.25MB        全文页数:33页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年最新沪科版九年级数学下册第24章圆专题练习试题(含答案及详细解析).docx

    沪科版九年级数学下册第24章圆专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,四边形ABCD内接于O,若ADC=130°,则AOC的度数为( )A25°B80°C130°D100°2、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是( )ABCD3、如图,在中,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是( )ABCD4、如图,在中,将绕点按逆时针方向旋转后得到,则图中阴影部分面积为( )ABCD5、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作P,当P与直线AB相切时,点P的坐标是()ABC或D(2,0)或(5,0)6、随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是( )ABCD7、下列图形中,既是轴对称图形,又是中心对称图形的是()ABCD8、如图,为的直径,为外一点,过作的切线,切点为,连接交于,点在右侧的半圆周上运动(不与,重合),则的大小是( )A19°B38°C52°D76°9、下列汽车标志中既是轴对称图形又是中心对称图形的是( )ABCD10、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接则在点M运动过程中,线段长度的最小值是( )AB1C2D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、龙湖实验中学的操场有4条等宽的跑道,每条跑道是由两条直跑道和两个半圆形弧道连接而成,请根据小泓与瞿老师的对话计算每条跑道的宽度是_米2、如图,在平行四边形中,以点为圆心,为半径的圆弧交于点,连接,则图中黑色阴影部分的面积为_(结果保留)3、如图,PA,PB分别与O相切于A,B两点,C是优弧AB上的一个动点,若P = 50°,则ACB _°4、如图,在平面直角坐标系内,OA0A190°,A1OA060°,以OA1为直角边向外作RtOA1A2,使A2A1O90°,A2OA160°,按此方法进行下去,得到 RtOA2A3,RtOA3A4,若点A0的坐标是(1,0),则点A2021的横坐标是_5、已知圆O的圆心到直线l的距离为2,且圆的半径是方程x25x+60的根,则直线l与圆O的的位置关系是_三、解答题(5小题,每小题10分,共计50分)1、请阅读下列材料,并完成相应的任务:阿基米德是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子阿拉伯Al-Binmi (973-1050 年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Binmi详本出版了俄文版阿基米德全集第一题就是阿基米德折弦定理阿基米德折弦定理:如图1,和是的两条弦(即折线是圆的一条折弦), 是的中点,则从向所作垂线的垂足是折弦的中点,即下面是运用“截长法”证明的部分证明过程证明:如图2,在上截取,连接和是的中点,任务:(1)请按照上面的证明思路,写出该证明部分;(2)填空:如图3,已知等边内接于,为上一点,于点,则的周长是_2、已知:如图,ABC为锐角三角形,ABAC 求作:一点P,使得APCBAC作法:以点A为圆心, AB长为半径画圆;以点B为圆心,BC长为半径画弧,交A于点C,D两点;连接DA并延长交A于点P点P即为所求(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接PC,BDABAC,点C在A上BCBD,_BACCAD 点D,P在A上,CPDCAD(_) (填推理的依据)APCBAC3、如图,在平面直角坐标系中,ABC的顶点坐标分别为A(1,0),B(4,1),C(2,2)(1)直接写出点B关于原点对称的点B的坐标: ;(2)平移ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的A1B1C1;(3)画出ABC绕原点O逆时针旋转90°后得到的A2B2C24、如图,在平面直角坐标系中,有抛物线,已知OA =OC =3OB,动点P在过A,B,C三点的抛物线上(1)求抛物线的解析式;(2)求过A,B,C三点的圆的半径;(3)是否存在点P,使得ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标,若不存在,说明理由;5、在平面直角坐标系xOy中,的半径为2点P,Q为外两点,给出如下定义:若上存在点M,N,使得P,Q,M,N为顶点的四边形为矩形,则称点P,Q是的“成对关联点”(1)如图,点A,B,C,D横、纵坐标都是整数在点B,C,D中,与点A组成的“成对关联点”的点是_;(2)点在第一象限,点F与点E关于x轴对称若点E,F是的“成对关联点”,直接写出t的取值范围;(3)点G在y轴上若直线上存在点H,使得点G,H是的“成对关联点”,直接写出点G的纵坐标的取值范围-参考答案-一、单选题1、D【分析】根据圆内接四边形的性质求出B的度数,根据圆周角定理计算即可【详解】解:四边形ABCD内接于O,B+ADC=180°,ADC=130°,B=50°,由圆周角定理得,AOC=2B=100°,故选:D【点睛】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键2、C【分析】利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案【详解】解:A、不是中心对称图形,故A错误B、不是中心对称图形,故B错误C、是中心对称图形,故C正确D、不是中心对称图形,故D错误故选:C【点睛】本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键3、C【分析】过点A作ACx轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到 ,可得到点 ,再根据旋转的性质,即可求解【详解】解:如图,过点A作ACx轴于点C, 设 ,则 , , , ,解得: , , ,点 ,将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是故选:C【点睛】本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型4、B【分析】阴影部分的面积=扇形扇形,根据旋转性质以及直角三角形的性质,分别求出对应扇形的面积以及的面积,最后即可求出阴影部分的面积【详解】解:由图可知:阴影部分的面积=扇形扇形,由旋转性质可知:,在中,有勾股定理可知:,阴影部分的面积=扇形扇形 故选:B【点睛】本题主要是考查了旋转性质以及扇形面积公式,熟练利用旋转性质,得到对应扇形的半径和圆心角度数,利用扇形公式求解面积,这是解决本题的关键5、C【分析】由题意根据函数解析式求得A(-4,0),B(0-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设P与直线AB相切于D,连接PD,则PDAB,PD=1,根据相似三角形的性质即可得到结论【详解】解:直线交x轴于点A,交y轴于点B,令x=0,得y=-3,令y=0,得x=-4,A(-4,0),B(0,-3),OA=4,OB=3,AB=5,设P与直线AB相切于D,连接PD,则PDAB,PD=1,ADP=AOB=90°,PAD=BAO,APDABO,AP= ,OP= 或OP= ,P或P,故选:C【点睛】本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键6、C【分析】根据轴对称图形与中心对称图形的概念求解【详解】A是轴对称图形,不是中心对称图形,故此选项不合题意;B不是轴对称图形,是中心对称图形,故此选项不符合题意;C是轴对称图形,也是中心对称图形,故此选项合题意;D不是轴对称图形,也不是中心对称图形,故此选项不合题意故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合7、C【详解】解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;选项B不是轴对称图形,是中心对称图形,故B不符合题意;选项C既是轴对称图形,也是中心对称图形,故C符合题意;选项D是轴对称图形,不是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.8、B【分析】连接 由为的直径,求解 结合为的切线,求解 再利用圆周角定理可得答案.【详解】解:连接 为的直径, 为的切线, 故选B【点睛】本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.9、C【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、不是轴对称图形,是中心对称图形,故此选项不符合题意;故选:C【点睛】此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合10、A【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出HBN=MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明MBGNBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MGCH时最短,再根据BCH=30°求解即可【详解】解:如图,取BC的中点G,连接MG,旋转角为60°,MBH+HBN=60°,又MBH+MBC=ABC=60°,HBN=GBM,CH是等边ABC的对称轴,HB=AB,HB=BG,又MB旋转到BN,BM=BN,在MBG和NBH中,MBGNBH(SAS),MG=NH,根据垂线段最短,MGCH时,MG最短,即HN最短,此时BCH=×60°=30°,CG=AB=×5=2.5,MG=CG=,HN=,故选A【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点二、填空题1、【分析】设跑道的宽为米,根据直道长度一样,外圈与内圈的差是两个圆周长的差,列出式子求解即可【详解】解:设跑道的宽为米,由对称性设内圈两个半圆形弧道拼成的圆的半径为,根据题意可得:,解得:,故答案是:【点睛】本题考查了圆的基本概念,一元一次方程,解题的关键是根据题意列出等式求解2、【分析】过点C作于点H,根据正弦定义解得CH的长,再由扇形面积公式、三角形的面积公式解题即可【详解】解:过点C作于点H,在平行四边形中,平行四边形的面积为:,图中黑色阴影部分的面积为:,故答案为:【点睛】本题考查平行四边形的性质、扇形面积等知识,是基础考点,掌握相关知识是解题关键3、【分析】连接,根据切线的性质以及四边形内角和定理求得,进而根据圆周角定理即可求得ACB【详解】解:连接,如图,PA,PB分别与O相切故答案为:【点睛】本题考查了切线的性质,圆周角定理,四边形的内角和,掌握切线的性质是解题的关键4、22020【分析】根据,点的坐标是,得,点 的横坐标是,点 的横坐标是-,同理可得点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,依次进行下去,可得点的横坐标,进而求得的横坐标【详解】解:OA0A190°,A1OA060°,点A0的坐标是(1,0),OA01,点A1 的横坐标是 120,OA12OA02,A2A1O90°,A2OA160°,OA22OA14,点A2 的横坐标是- OA2-2-21, 依次进行下去,RtOA2A3,RtOA3A4,同理可得:点A3 的横坐标是2OA2823,点A4 的横坐标是823,点A5 的横坐标是 OA5×2OA42OA34OA21624,点A6 的横坐标是2OA52×2OA423OA36426,点A7 的横坐标是6426,发现规律,6次一循环,即,2021÷6=3365则点A2021的横坐标与的坐标规律一致是 22020故答案为:22020【点睛】本题考查了规律型点的坐标,解决本题的关键是理解动点的运动过程,总结规律,发现规律,点A3n在轴上,且坐标为5、相切或相交【详解】首先求出方程的根,再利用半径长度,由点O到直线l的距离为d,若dr,则直线与圆相交;若dr,则直线于圆相切;若dr,则直线与圆相离,从而得出答案【分析】解:x25x+60,(x2)(x3)0,解得:x12,x23,圆的半径是方程x25x+60的根,即圆的半径为2或3,当半径为2时,直线l与圆O的的位置关系是相切,当半径为3时,直线l与圆O的的位置关系是相交,综上所述,直线l与圆O的的位置关系是相切或相交故答案为:相切或相交【点睛】本题考查的是直线与圆的位置关系,因式分解法解一元二次方程,解决此类问题可通过比较圆心到直线距离d与圆的半径大小关系完成判定三、解答题1、(1)证明见解析;(2)【分析】(1)首先证明,进而得出,再利用等腰三角形的性质得出,即可得出答案;(2)首先证明,进而得出,以及,进而求出的长即可得出答案(1)证明:如图2,在上截取,连接,和是的中点,在和中,又,;(2)解:如图3,截取,连接,由题意可得:,在和中,则,则 故答案为:【点睛】此题主要考查了圆与三角形综合,涉及了圆周角定理、全等三角形的判定与性质以及等腰三角形以及等边三角形的性质,正确作出辅助线利用全等三角形的判定与性质解题是解题关键2、(1)见解析;(2)BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半【分析】(1)根据按步骤作图即可;(2)根据圆周角定理进行证明即可【详解】解:(1)如图所示,(2)证明:连接PC,BDABAC,点C在A上BCBD,BAC=BADBACCAD 点D,P在A上,CPDCAD(圆周角定理) (填推理的依据)APCBAC故答案为:BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半【点睛】本题考查了尺规作图作圆,圆周角定理,掌握圆周角定理是解题的关键3、(1)(4,1);(2)见解析;(3)见解析【分析】(1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;(2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;(3)将三个点分别绕原点O逆时针旋转90°后得到对应点,再首尾顺次连接即可【详解】(1)点B关于原点对称的点B的坐标为(4,1),故答案为:(4,1);(2)如图所示,A1B1C1即为所求(3)如图所示,A2B2C2即为所求【点睛】本题主要考查作图平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点4、(1)y=-x2+2x+3;(2);(3)点P(1,4)或(-2,-5)【分析】(1)3=OC=OA=3OB,故点A、B、C的坐标分别为:(0,3)、(-1,0)、(3,0),即可求解;(2)圆的圆心在BC的中垂线上,故设圆心R(1,m),则RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),即可求解;(3)分两种情况讨论,利用等腰直角三角形的性质,即可求解【详解】解:(1)令x=0,则y=3,则点A的坐标为(3,0),根据题意得:OC=3=OA=3OB,故点B、C的坐标分别为:(-1,0)、(3,0),则抛物线的表达式为:y=a(x+1)(x-3)=a(x2-2x-3),把(3,0)代入得-3a=3,解得:a=-1,故抛物线的表达式为:y=-x2+2x+3;(2)圆的圆心在BC的中垂线上,故设圆心R(1,m),则RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),则圆的半径为:;(3)过点A、C分别作直线AC的垂线,交抛物线分别为P、P1,设点P(x,-x2+2x+3),过点P作PQ轴于点Q,OA =OC,PAC=90°,ACO=OAC=45°,PAC=90°,PAQ=45°,PAQ 是等腰直角三角形,PQ=AQ=x,AQ+AO=x+3=-x2+2x+3,解得:(舍去),点P(1,4);设点P1(m,-m2+2m+3),过点P1作P1D轴于点D,同理得P1CD是等腰直角三角形,且点P1在第三象限,即m<0,P1D=CD=m2-2m-3,DO=-m,DO+OC= P1D,即-m+3= m2-2m-3,解得:(舍去),点P(-2,-5);综上,点P(1,4)或(-2,-5)【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质,等腰直角三角形的判定和性质,圆的基本知识等,其中(3),要注意分类求解,避免遗漏5、(1)B和C;(2);(3)【分析】(1)根据图形可确定与点A组成的“成对关联点”的点;(2)如图,点E在直线上,点F在直线上,当点E在线段上,点F在线段上时,有的“成对关联点”,求出即可得出的取值范围;(3)分类讨论:点G在上,点G在的下方和点G在的上方,构造的“成对关联点”,即可求出的取值范围【详解】(1)如图所示:在点B,C,D中,与点A组成的“成对关联点”的点是B和C,故答案为:B和C;(2)在直线上,点F与点E关于x轴对称,在直线,如下图所示:直线和与分别交于点,与直线分别交于,由题可得:,当点E在线段上时,有的“成对关联点”;(3)如图,当点G在上时,轴,在上不存在这样的矩形;如图,当点G在下方时,也不存在这样的矩形;如图,当点G在上方时,存在这样的矩形GMNH,当恰好只能构成一个矩形时,设,直线与y轴相交于点K,则,即,解得:或(舍),综上:当时,点G,H是的“成对关联点”【点睛】本题考查几何图形综合问题,属于中考压轴题,掌握“成对关联点”的定义是解题的关键

    注意事项

    本文(2022年最新沪科版九年级数学下册第24章圆专题练习试题(含答案及详细解析).docx)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开