欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年精品解析沪科版九年级数学下册第24章圆同步训练试题(含答案解析).docx

    • 资源ID:28165156       资源大小:1.17MB        全文页数:31页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年精品解析沪科版九年级数学下册第24章圆同步训练试题(含答案解析).docx

    沪科版九年级数学下册第24章圆同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、点P(3,1)关于原点对称的点的坐标是( )A(3,1)B(3,1)C(3,1)D(3,1)2、如图,点A、B、C在上,则的度数是( )A100°B50°C40°D25°3、已知O的半径为4,则点A在( )AO内BO上CO外D无法确定4、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为( )A1cmB2cmC3cmD4cm5、如图,AB 为O 的直径,弦 CDAB,垂足为点 E,若 O的半径为5,CD=8,则AE的长为( )A3B2C1D6、如图,在中,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于( )ABCD7、如图,CD是的高,按以下步骤作图:(1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于G、H两点(2)作直线GH交AB于点E(3)在直线GH上截取(4)以点F为圆心,AF长为半径画圆交CD于点P则下列说法错误的是( ) ABCD8、如图,是的直径,、是上的两点,若,则( )A15°B20°C25°D30°9、下列判断正确的个数有( )直径是圆中最大的弦;长度相等的两条弧一定是等弧;半径相等的两个圆是等圆;弧分优弧和劣弧;同一条弦所对的两条弧一定是等弧A1个B2个C3个D4个10、在半径为6cm的圆中,的圆心角所对弧的弧长是( )AcmBcmCcmDcm第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,、分别与相切于A、B两点,若,则的度数为_2、一个直角三角形的斜边长cm,两条直角边长的和是6cm,则这个直角三角形外接圆的半径为_cm,直角三角形的面积是_3、如图,在平行四边形中,以点为圆心,为半径的圆弧交于点,连接,则图中黑色阴影部分的面积为_(结果保留)4、如图,在平面直角坐标系中,点N是直线上动点,M是上动点,若点C的坐标为,且与y轴相切,则长度的最小值为_5、如图,将半径为的圆形纸片沿一条弦折叠,折叠后弧的中点与圆心重叠,则弦的长度为_三、解答题(5小题,每小题10分,共计50分)1、如图,已知弓形的长,弓高,(,并经过圆心O)(1)请利用尺规作图的方法找到圆心O;(2)求弓形所在的半径的长2、下面是“过圆外一点作圆的切线”的尺规作图过程已知:O和O外一点P求作:过点P的O的切线作法:如图,(1)连接OP;(2)分别以点O和点P为圆心,大于的长半径作弧,两弧相交于M,N两点;(3)作直线MN,交OP于点C;(4)以点C为圆心,CO的长为半径作圆,交O于A,B两点;(5)作直线PA,PB直线PA,PB即为所求作O的切线完成如下证明:证明:连接OA,OB,OP是C直径,点A在C上OAP=90°(_)(填推理的依据)OAAP又点A在O上,直线PA是O的切线(_)(填推理的依据)同理可证直线PB是O的切线3、如图,在中,O为AC上一点,以点O为圆心,OC为半径的圆恰好与AB相切,切点为D,与AC的另一个交点为E(1)求证:BO平分;(2)若,求BO的长4、对于平面直角坐标系xOy中的图形M和点P给出如下定义:Q为图形M上任意一点,若P,Q两点间距离的最大值和最小值都存在,且最大值是最小值的2倍,则称点P为图形M的“二分点”已知点N(3,0),A(1,0),(1)在点A,B,C中,线段ON的“二分点”是_;点D(a,0),若点C为线段OD的“二分点”,求a的取值范围;(2)以点O为圆心,r为半径画圆,若线段AN上存在的“二分点”,直接写出r的取值范围5、如图,在中,D是边BC上一点,作射线AD,满足,在射线AD取一点E,且将线段AE绕点A逆时针旋转90°,得到线段AF,连接BE,FE,连接FC并延长交BE于点G(1)依题意补全图形;(2)求的度数;(3)连接GA,用等式表示线段GA,GB,GC之间的数量关系,并证明-参考答案-一、单选题1、C【分析】据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),然后直接作答即可【详解】解:根据中心对称的性质,可知:点P(3,1)关于原点O中心对称的点的坐标为(3,1)故选:C【点睛】本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形2、C【分析】先根据圆周角定理求出AOB的度数,再由等腰三角形的性质即可得出结论【详解】ACB=50°,AOB=100°,OA=OB,OAB=OBA= 40°,故选:C【点睛】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半3、C【分析】根据O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案【详解】解:O的半径r=4,且点A到圆心O的距离d=5,d>r,点A在O外,故选:C【点睛】本题主要考查点与圆的位置关系,点与圆的位置关系有3种设O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外dr;点P在圆上d=r;点P在圆内dr4、B【分析】连接OB,过点O作OCAB于点D,交O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可【详解】解:连接OB,过点O作OCAB于点D,交O于点C,如图所示:AB=8cm,BD=AB=4(cm),由题意得:OB=OC=5cm,在RtOBD中,OD=(cm),CD=OC-OD=5-3=2(cm),即水的最大深度为2cm,故选:B【点睛】本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键5、B【分析】连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度【详解】解:连接OC,如图AB 为O 的直径,CDAB,垂足为点 E,CD=8,;故选:B【点睛】本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出6、D【分析】连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解【详解】解:连接CD,如图所示:点D是AB的中点,在RtACB中,由勾股定理可得;故选D【点睛】本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键7、C【分析】连接AF、BF,由作法可知,FE垂直平分AB,再根据可得AFE=45°,进而得出AFB90°,根据等腰直角三角形和圆周角定理可判断哪个结论正确【详解】解:连接AF、BF,由作法可知,FE垂直平分AB,故A正确;CD是的高,故B正确;,故C错误;,AFE=45°,同理可得BFE=45°,AFB90°,故D正确;故选:C【点睛】本题考查了作垂直平分线和圆周角定理,解题关键是明确作图步骤,熟练运用垂直平分线的性质和圆周角定理进行推理证明8、C【分析】根据圆周角定理得到BDC的度数,再根据直径所对圆周角是直角,即可得到结论【详解】解:BOC=130°,BDC=BOC=65°,AB是O的直径,ADB=90°,ADC=90°-65°=25°,故选:C【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键9、B【详解】直径是圆中最大的弦;故正确,同圆或等圆中长度相等的两条弧一定是等弧;故不正确半径相等的两个圆是等圆;故正确弧分优弧、劣弧和半圆,故不正确同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则不正确综上所述,正确的有故选B【点睛】本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键10、C【分析】直接根据题意及弧长公式可直接进行求解【详解】解:由题意得:的圆心角所对弧的弧长是;故选C【点睛】本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键二、填空题1、【分析】根据已知条件可得出,再利用圆周角定理得出即可【详解】解:、分别与相切于、两点,故答案为:【点睛】本题考查的知识点是切线的性质以及圆周角定理,掌握以上知识点是解此题的关键2、 4 【分析】设一直角边长为x,另一直角边长为(6-x)根据勾股定理,解一元二次方程求出,根据这个直角三角形的斜边长为外接圆的直径,可求外接圆的半径为cm,利用三角形面积公式求即可【详解】解:设一直角边长为x,另一直角边长为(6-x),三角形是直角三角形,根据勾股定理,整理得:,解得,这个直角三角形的斜边长为外接圆的直径,外接圆的半径为cm,三角形面积为故答案为;【点睛】本题考查直角三角形的外接圆,直角所对弦性质,勾股定理,一元二次方程,三角形面积,掌握以上知识是解题关键3、【分析】过点C作于点H,根据正弦定义解得CH的长,再由扇形面积公式、三角形的面积公式解题即可【详解】解:过点C作于点H,在平行四边形中,平行四边形的面积为:,图中黑色阴影部分的面积为:,故答案为:【点睛】本题考查平行四边形的性质、扇形面积等知识,是基础考点,掌握相关知识是解题关键4、-2【分析】由图可知,当CNAB且C、M、N三点共线时,长度最小,利用勾股定理求出CN的长,故可求解【详解】由图可知,当CNAB且C、M、N三点共线时,长度最小直线AB的解析式为当x=0时,y=5,当y=0时,x=5B(0,5),A(5,0)AO=BO,AOB是等腰直角三角形BAO=90°当CNAB时,则ACN是等腰直角三角形CN=ANCAC=7AC2=CN2+AN2=2CN2CN=当 C、M、N三点共线时,长度最小即MN=CN-CM=-2故答案为:-2【点睛】此题主要考查圆与几何综合,解题的关键是根据题意找到符合题意的位置,利用等腰直角三角形的性质求解5、【分析】连接OC交AB于点D,再连接OA根据轴对称的性质确定,OD=CD;再根据垂径定理确定AD=BD;再根据勾股定理求出AD的长度,进而即可求出AB的长度【详解】解:如下图所示,连接OC交AB于点D,再连接OA折叠后弧的中点与圆心重叠,OD=CDAD=BD圆形纸片的半径为10cm,OA=OC=10cmOD=5cmcmBD=cmcm故答案为:【点睛】本题考查轴对称的性质,垂径定理,勾股定理,综合应用这些知识点是解题关键三、解答题1、(1)见解析(2)10【分析】(1)作BC的垂直平分线,与直线CD的交点即为圆心;(2)连接OA,根据勾股定理列出方程即可求解(1)解:如图所示,点O即是圆心;(2)解:连接OA,并经过圆心O,解得,答:半径为10【点睛】本题考查了垂径定理和确定圆心,解题关键是熟练作图确定圆心,利用垂径定理和勾股定理求半径2、直径所对的圆周角是直角 经过半径的外端并且垂直于这条半径的直线是圆的切线 【分析】连接OA,OB,根据圆周角定理可知OAP=90°,再依据切线的判定证明结论;【详解】证明:连接OA,OB,OP是C直径,点A在C上,OAP=90°(直径所对的圆周角是直角),OAAP又点A在O上,直线PA是O的切线(经过半径的外端并且垂直于这条半径的直线是圆的切线),同理可证直线PB是O的切线,故答案为:直径所对的圆周角是直角;经过半径的外端并且垂直于这条半径的直线是圆的切线3、(1)见解析;(2)2【分析】(1)连接OD,由与AB相切得,由HL定理证明由全等三角形的性质得,即可得证;(2)设的半径为,则,在中,得出关系式求出,可得出的长,在中,由正切值求出,在中,由勾股定理求出即可【详解】(1)如图,连接OD,与AB相切,在与中,平分;(2)设的半径为,则,在中,解得:,在中,即,在中,【点睛】本题考查圆与直线的位置关系,全等三角形的判定与性质、三角函数以及勾股定理,掌握相关知识点的应用是解题的关键4、(1)B和C;或;(2)或【分析】(1)分别找出点A,B,C到线段ON的最小值和最大值,是否满足“二分点”定义即可;对a的取值分情况讨论:、和,根据“二分点”的定义可求解;(2)设线段AN上存在的“二分点”为,对的取值分情况讨论、,、,和,根据“二分点”的定义可求解【详解】(1)点A在ON上,故最小值为0,不符合题意,点B到ON的最小值为,最大值为,点B是线段ON的“二分点”,点C到ON的最小值为1,最大值为,点C是线段ON的“二分点”,故答案为:B和C;若时,如图所示:点C到OD的最小值为,最大值为,点C为线段OD的“二分点”,解得:;若,如图所示:点C到OD的最小值为1,最大值为,满足题意;若时,如图所示:点C到OD的最小值为1,最大值为,点C为线段OD的“二分点”,解得:(舍);若时,如图所示:点C到OD的最小值为,最大值为,点C为线段OD的“二分点”,解得:或(舍),综上所得:a的取值范围为或;(2)如图所示,设线段AN上存在的“二分点”为,当时,最小值为:,最大值为:,即,;当,时,最小值为:,最大值为:,即,不存在;当,时,最小值为:,最大值为:,即,不存在;当时,最小值为:,最大值为:,即,综上所述,r的取值范围为或【点睛】本题考查坐标上的两点距离,解一元二次方程解不等式以及点到圆的距离求最值,根据题目所给条件,掌握“二分点”的定义是解题的关键5、(1)见解析;(2)(3)【分析】(1)根据题意补全图形即可;(2)根据旋转的性质可得,进而证明,可得,根据角度的转换可得,进而根据三角形的外角性质即可证明;(3)过点作,证明,进而根据勾股定理以及线段的转换即可得到(1)如图,(2)将线段AE绕点A逆时针旋转90°,得到线段AF,,又即(3)证明如下,如图,过点作,又,又,即【点睛】本题考查了旋转的性质,三角形全等的性质与判定,勾股定理,等腰三角形的性质,掌握旋转的性质是解题的关键

    注意事项

    本文(2022年精品解析沪科版九年级数学下册第24章圆同步训练试题(含答案解析).docx)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开