欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年沪教版七年级数学第二学期第十四章三角形同步测评试卷(含答案解析).docx

    • 资源ID:28165250       资源大小:858.01KB        全文页数:34页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年沪教版七年级数学第二学期第十四章三角形同步测评试卷(含答案解析).docx

    沪教版七年级数学第二学期第十四章三角形同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图, ABCCDA,BAC=80°,ABC=65°,则CAD的度数为( )A35°B65°C55°D40°2、已知三角形的两边长分别为2cm和3cm,则第三边长可能是( )A6cmB5cmC3cmD1cm3、若一个三角形的三个外角之比为3:4:5,则该三角形为()A直角三角形B等腰三角形C等边三角形D等腰直角三角形4、三根小木棒摆成一个三角形,其中两根木棒的长度分别是和,那么第三根小木棒的长度不可能是( )ABCD5、若三条线段中a3,b5,c为奇数,那么以a、b、c为边组成的三角形共有( )A1个B2个C3个D4个6、BDE和FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内若BC5,则五边形DECHF的周长为()A8B10C11D127、一副三角板如图放置,点A在DF的延长线上,DBAC90°,E30°,C45°,若BC/DA,则ABF的度数为()A15°B20°C25°D30°8、如图,在ABC和DEF中,AD,AFDC,添加下列条件中的一个仍无法证明ABCDEF的是()ABCEFBABDECBEDACBDFE9、已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为( )A10B15C17D1910、如图,ABAC,点D、E分别在AB、AC上,补充一个条件后,仍不能判定ABEACD的是( )ABCBADAECBECDDAEBADC第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在AB1C1中,AC1B1C1,C120°,在B1C1上取一点C2,延长AB1到点B2,使得B1B2B1C2,在B2C2上取一点C3,延长AB2到点B3,使得B2B3B2C3,在B3C3上取一点C4,延长AB3到点B4,使得B3B4B3C4,按此操作进行下去,那么第2个三角形的内角AB2C2_°;第n个三角形的内角ABnCn_°2、若等腰三角形两底角平分线相交所形成的钝角是128°,则这个等腰三角形的顶角的度数是_3、在新年联欢会上,老师设计了“你说我画”的游戏游戏规则如下:甲同学需要根据乙同学提供的三个条件画出形状和大小都确定的三角形已知乙同学说出的前两个条件是“,”现仅存下列三个条件:;为了甲同学画出形状和大小都确定的,乙同学可以选择的条件有: _(填写序号,写出所有正确答案)4、等腰三角形中,一条边长是2cm,另一条边长是3cm,这个等腰三角形的周长是_5、如图,点F,A,D,C在同一条直线上,则AC等于_三、解答题(10小题,每小题5分,共计50分)1、如图,四边形中,于点(1)如图1,求证:;(2)如图2,延长交的延长线于点,点在上,连接,且,求证:;(3)如图3,在(2)的条件下,点在的延长线上,连接,交于点,连接,且,当,时,求的长2、如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DEAB,过点E作EFDE,交BC的延长线于点F(1)求证:CECF;(2)若CD2,求DF的长3、已知:(1)O是BAC内部的一点如图1,求证:BOCA;如图2,若OAOBOC,试探究BOC与BAC的数量关系,给出证明(2)如图3,当点O在BAC的外部,且OAOBOC,继续探究BOC与BAC的数量关系,给出证明4、如图,AD,BC相交于点O,AODO(1)如果只添加一个条件,使得AOBDOC,那么你添加的条件是 (要求:不再添加辅助线,只需填一个答案即可);(2)根据已知及(1)中添加的一个条件,证明ABDC5、探究与发现:如图,在ABC中,BC45°,点D在BC边上,点E在AC边上,且ADEAED,连接DE(1)当BAD60°时,求CDE的度数;(2)当点D在BC(点B、C除外)边上运动时,试猜想BAD与CDE的数量关系,并说明理由(3)深入探究:如图,若BC,但C45°,其他条件不变,试探究BAD与CDE的数量关系6、如图,在等边三角形ABC中,点P为ABC内一点,连接AP,BP,CP,将线段AP绕点A 顺时针旋转60°得到 ,连接 (1)用等式表示 与CP的数量关系,并证明;(2)当BPC120°时, 直接写出 的度数为 ;若M为BC的中点,连接PM,请用等式表示PM与AP的数量关系,并证明7、已知,AD,BC平分ABD,求证:ACDC8、如图,在中,AD平分,于点E求证:9、在ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作ADE,使AD=AE,DAE =BAC,连接CE(1)如图1,当点D在线段BC上,如果BAC=90°,则BCE= 度;(2)设,如图2,当点在线段BC上移动,则,之间有怎样的数量关系?请说明理由;当点在直线BC上(线段BC之外)移动,则,之间有怎样的数量关系?请直接写出你的结论10、如图,是等边三角形,D点是BC上一点,于点E,CE交AD于点P求的度数-参考答案-一、单选题1、A【分析】先根据三角形内角和定理求出ACB=35°,再根据全等三角形性质即可求出CAD=35°【详解】解:BAC=80°,ABC=65°,ACB=180°-BAC-ABC=35°,ABCCDA,CAD=ACB=35°故选:A【点睛】本题考查了三角形的内角和定理,全等三角形的性质,熟知两个定理是解题关键2、C【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边即可求解【详解】解:设第三边长为xcm,根据三角形的三边关系可得:3-2x3+2,解得:1x5,只有C选项在范围内故选:C【点睛】本题考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和3、A【分析】根据三角形外角和为360°计算,求出内角的度数,判断即可【详解】解:设三角形的三个外角的度数分别为3x、4x、5x,则3x+4x+5x360°,解得,x30°,三角形的三个外角的度数分别为90°、120°、150°,对应的三个内角的度数分别为90°、60°、30°,此三角形为直角三角形,故选:A【点睛】本题考查的是三角形的外角和,掌握三角形外角和为360°是解题的关键4、D【分析】设第三根木棒长为x厘米,根据三角形的三边关系可得85x8+5,确定x的范围即可得到答案【详解】解:设第三根木棒长为x厘米,由题意得:85x8+5,即3x13,故选:D【点睛】此题主要考查了三角形的三边关系,要注意三角形形成的条件:任意两边之和第三边,任意两边之差第三边5、C【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数【详解】解:c的范围是:53c5+3,即2c8c是奇数,c3或5或7,有3个值则对应的三角形有3个故选:C【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键6、B【分析】证明AFHCHG(AAS),得出AF=CH由题意可知BE=FH,则得出五边形DECHF的周长=AB+BC,则可得出答案【详解】解:GFH为等边三角形,FH=GH,FHG=60°,AHF+GHC=120°,ABC为等边三角形,AB=BC=AC=5,ACB=A=60°,AHF=180°-FHG-GHC =120°-GHC,HGC=180°-C-GHC =120°-GHC,AHF=HGC,在AFH和CHG中,AFHCHG(AAS),AF=CHBDE和FGH是两个全等的等边三角形,BE=FH,五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,=(BD+DF+AF)+(CE+BE),=AB+BC=10故选:B【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握全等三角形的判定方法是解题的关键7、A【分析】先求出EFD=60°,ABC=45°,由BCAD,得到EFD=FBC=60°,则ABF=FBC-ABC=15°【详解】解:DBAC90°,E30°,C45°,EFD=60°,ABC=45°,BCAD,EFD=FBC=60°,ABF=FBC-ABC=15°,故选A【点睛】本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键8、A【分析】根据AF=DC求出AC=DF,再根据全等三角形的判定定理逐个判断即可【详解】解:AF=DC,AF+FC=DC+FC,即AC=DF,A、BC=EF,AC=DF,A=D,不符合全等三角形的判定定理,不能推出ABCDEF,故本选项符合题意;B、AB=DE,A=D,AC=DF,符合全等三角形的判定定理SAS,能推出ABCDEF,故本选项不符合题意;CB=E,A=D,AC=DF,符合全等三角形的判定定理AAS,能推出ABCDEF,故本选项不符合题意;DACB=DFE,AC=DF,A=D,符合全等三角形的判定定理ASA,能推出ABCDEF,故本选项不符合题意;故选:A【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL9、C【分析】等腰三角形两边的长为3和7,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论【详解】解:当腰是3,底边是7时,3+37,不满足三角形的三边关系,因此舍去当底边是3,腰长是7时,3+77,能构成三角形,则其周长3+7+717故选:C【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题时注意:若没有明确腰和底边,则一定要分类进行讨论,还应验证各种情况是否能构成三角形,这是解题的关键10、C【分析】根据全等三角形的判定定理进行判断即可【详解】解:根据题意可知:ABAC,若,则根据可以证明ABEACD,故A不符合题意;若ADAE,则根据可以证明ABEACD,故B不符合题意;若BECD,则根据不可以证明ABEACD,故C符合题意;若AEBADC,则根据可以证明ABEACD,故D不符合题意;故选:C【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解本题的关键二、填空题1、40 【分析】先根据等腰三角形的性质求出C1B1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出B1B2C2,C3B3B2及C4B3B2的度数,找出规律即可得出ABnCn的度数【详解】解:AB1C1中,AC1B1C1,C120°,C1B1A ,B1B2B1C2,C1B1A是B1B2C2的外角,B1B2C2 ;同理可得,C3B3B220°,C4B3B210°,ABnCn故答案为:40,【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出B1B2C2,C3B3B2及C4B3B2的度数,找出规律是解答此题的关键2、【分析】先根据角平分线的定义、三角形的内角和定理求出等腰三角形两底角的度数和,再根据三角形内角和求出顶角的度数即可【详解】解:BOC128°,OBC+OCB180°BOC180°128°52°,BO平分ABC,CO平分ACB,ABC+ACB2(OBC+OCB)104°,A180°(ABC+ACB)180°104°76°故答案为:76°【点睛】本题主要考查角平分线的定义和三角形内角和定理,牢记角平分线分得的两个角相等,三角形内角和是是解决本题的关键3、【分析】根据两边及其夹角对应相等的两个三角形全等,即可求解【详解】解:若选,是边边角,不能得到形状和大小都确定的;若选,是边角边,能得到形状和大小都确定的;若选,是边边角,不能得到形状和大小都确定的;所以乙同学可以选择的条件有故答案为:【点睛】本题主要考查了全等三角形的判定,熟练掌握两边及其夹角对应相等的两个三角形全等是解题的关键4、或【分析】因为已知长度为和两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论【详解】解:当为底时,其它两边都为,、可以构成三角形,周长为;当为底时,其它两边都为,、可以构成三角形,周长为;故答案为:或【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,解题的关键是利用分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要5、6.5【分析】由全等三角形的性质可得到AC=DF,从而推出AF=CD,再由,求出,则【详解】解:ABCDEF,AC=DF,即AF+AD=CD+AD,AF=CD,故答案为:6.5【点睛】本题主要考查了全等三角形的性质,线段的和差,解题的关键在于能够熟练掌握全等三角形的性质三、解答题1、(1)见解析;(2)见解析;(3)2【分析】(1)过点B作于点Q,根据AAS证明得,再证明四边形是矩形得BQ=CG,从而得出结论;(2) 在GF上截取GH=GE,连接AH,证明AH=FH,GE=GH即可;(3) 过点A作于点P,在FC上截取,连接,证明得,可证明AC是EH的垂直平分线,再证明和得可求出,从而可得结论【详解】解:(1)证明:过点B作于点Q,如图1又,四边形是矩形;(2)在GF上截取GH=GE,连接AH,如图2,又(3)过点A作于点P,在FC上截取,连接,如图3,由(1)、(2)知,AC是EH的垂直平分线,又, ,即 ,即 在和中,AH=AMHAB=MADAB=AD 【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键2、(1)证明见解析;(2)4【分析】(1)根据等边三角形的性质和平行线的性质可证得EDCECDDEC60°,再根据直角定义和三角形的外角性质证得FFEC30°,利用等角对等边即可证得结论;(2)由等角对等边可知CE=DC=2,结合(1)中结论即可求解(1)证明:ABC是等边三角形,ABACB60°DEAB,BEDC60°,ACED60°,EDCECDDEC60°,EFED,DEF90°,F30°F+FECECD60°,FFEC30°,CECF(2)解:由(1)可知EDCECDDEC60°,CEDC2又CECF,CF2DFDC+CF2+24【点睛】本题考查等边三角形的性质、等腰三角形的判定、平行线的性质、三角形的外角性质、线段的和与差,熟练掌握相关知识的联系与运用是解答的关键3、(1)见解析;BOC2A,见解析;(2)BOC2BAC,见解析【分析】(1)连接AO并延长AO至点E,根据三角形外角性质解答即可;延长AO至点E,根据三角形外角性质解答即可;(2)根据三角形外角性质和三角形内角和定理解答即可【详解】证明:(1)如图所示:连接AO并延长AO至点E,则BOEBAO,COECAO,BOCA;BOC与BAC的数量关系:BOC2A;证明:如图所示,延长AO至点E,则BOEBAO+B,COECAO+C,OAOBOC,BAOB,CAOC,BOCCOE+COEBAO+B+CAO+C2(BAO+CAO)2BAC;(2)BOC与BAC的数量关系:BOC2BAC;证明:如图所示,设Bx, OAOBOC,BBAOx,COACBAC+x;在BEO和AEC中,有:B+BOCC+CAE;即x+BOCCAE+x+CAE2BAC+x;即BOC2BAC【点睛】此题考查三角形综合题,关键是根据三角形外角性质和三角形内角和定理解答4、(1)OB=OC(或,或);(2)见解析【分析】(1)根据SAS添加OB=OC即可;(2)由(1)得AOBDOC,由全等三角形的性质可得结论【详解】解:(1)添加的条件是:OB=OC(或,或)证明:在和中所以,AOBDOC(2)由(1)知,AOBDOC所以,ABDC【点睛】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解答本题的关键5、(1)30°;(2)BAD2CDE,理由见解析;(3)BAD2CDE【分析】(1)根据三角形的外角的性质求出ADC,结合图形计算即可;(2)设BADx,根据三角形的外角的性质求出ADC,结合图形计算即可;(3)设BADx,仿照(2)的解法计算【详解】解:(1)ADC是ABD的外角,ADCBAD+B105°,DAEBACBAD30°,ADEAED75°,CDE105°75°30°;(2)BAD2CDE,理由如下:设BADx,ADCBAD+B45°+x,DAEBACBAD90°x,ADEAED,CDE45°+xx,BAD2CDE;(3)设BADx,ADCBAD+BB+x,DAEBACBAD180°2Cx,ADEAEDC+x,CDEB+x(C+x)x,BAD2CDE【点睛】本题考查了三角形内角和和外角的性质,解题关键是熟练掌握三角形内角和和外角性质,通过设参数计算,发现角之间的关系6、(1),理由见解析;(2)60°;PM,见解析【分析】(1)根据等边三角形的性质,可得ABAC,BAC60°,再由由旋转可知:从而得到,可证得,即可求解 ;(2)由BPC120°,可得PBCPCB60°根据等边三角形的性质,可得BAC60°,从而得到ABCACB120°,进而得到ABPACP60°再由,可得 ,即可求解;延长PM到N,使得NMPM,连接BN可先证得PCMNBM从而得到CPBN,PCMNBM进而得到 根据可得,可证得,从而得到 再由 为等边三角形,可得 从而得到 ,即可求解【详解】解:(1) 理由如下:在等边三角形ABC中,ABAC,BAC60°,由旋转可知: 即在和ACP中 (2)BPC120°,PBCPCB60°在等边三角形ABC中,BAC60°,ABCACB120°,ABPACP60° ,ABPABP60°即 ;PM 理由如下:如图,延长PM到N,使得NMPM,连接BNM为BC的中点,BMCM在PCM和NBM中 PCMNBM(SAS)CPBN,PCMNBM BPC120°,PBCPCB60°PBCNBM60°即NBP60°ABCACB120°,ABPACP60°ABPABP60°即 在PNB和 中 (SAS) 为等边三角形, ,PM 【点睛】本题主要考查了等边三角形判定和性质,全等三角形的判定和性质,图形的旋转,熟练掌握等边三角形判定和性质定理,全等三角形的判定和性质定理,图形的旋转的性质是解题的关键7、见解析【分析】证明BACBDC即可得出结论【详解】解:BC平分ABD,ABCDBC,在BAC和BDC中,BACBDC,ACDC【点睛】本题考查角平分线的意义及全等三角形的判定与性质,解题关键是掌握角平分线的性质及全等三角形的判定与性质8、证明见解析.【分析】延长CE交AB于F,求出AECAEF,FAECAE,根据ASA证FAECAE,推出ACEAFC,根据三角形外角性质得出AFCBECD,代入即可【详解】证明:延长CE交AB于F,CEAD,AECAEF,AD平分BAC,FAECAE,在FAE和CAE中, ,FAECAE(ASA),ACEAFC,AFCBECD,ACEBECD【点睛】本题考查了全等三角形的性质和判定,三角形的外角性质等知识点,关键是作辅助线后求出AFCACE9、(1)90;(2),见解析;或【分析】(1)由等腰直角三角形的性质可得ABCACB45°,由“SAS”可证BADCAE,可得ABCACE45°,可求BCE的度数;(2)由“SAS”可证ABDACE得出ABDACE,再用三角形的内角和即可得出结论;分两种情况,由“SAS”可证ABDACE得出ABDACE,再用三角形的内角和即可得出结论【详解】解:(1),AB=AC,AD=AE, 在和中,(2)或 理由:,即在和中, ,如图:,即在和中, ,综上所述:点D在直线BC上移动,+180°或【点睛】本题主要考查全等三角形的判定及性质,等腰三角形的性质和三角形内角和定理,掌握全等三角形的判定方法及性质是关键10、【分析】由题意易得,则有,然后可得,进而可证,则有,最后问题可求解【详解】解:是等边三角形,(SAS),【点睛】本题主要考查等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定,熟练掌握等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定是解题的关键

    注意事项

    本文(2022年沪教版七年级数学第二学期第十四章三角形同步测评试卷(含答案解析).docx)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开