中考专题2022年北京市海淀区中考数学三年高频真题汇总卷(含答案及详解).docx
-
资源ID:28168252
资源大小:908.91KB
全文页数:30页
- 资源格式: DOCX
下载积分:9金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
中考专题2022年北京市海淀区中考数学三年高频真题汇总卷(含答案及详解).docx
· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·2022年北京市海淀区中考数学三年高频真题汇总卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列方程中,关于x的一元二次方程的是( )Ax212xBx32x20CDx2y102、如图,中,平分,如果点,分别为,上的动点,那么的最小值是( )A6B8C10D4.83、已知线段AB7,点C为直线AB上一点,且ACBC43,点D为线段AC的中点,则线段BD的长为( )A5或18.5B5.5或7C5或7D5.5或18.54、正八边形每个内角度数为( )A120°B135°C150°D160°5、若关于x的不等式组有且仅有3个整数解,且关于y的方程的解为负整数,则符合条件的整数a的个数为( )A1个B2个C3个D4个6、若,则下列分式化简正确的是( )ABCD7、若二次函数的图象经过点,则a的值为( )A-2B2C-1D18、若,则的值为( )AB8CD9、下列计算中正确的是( )ABCD10、已知关于的分式方程无解,则的值为( )A0B0或8C8D0或8或4第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果有意义,那么x的取值范围是_2、一组数据8,2,6,10,5的极差是_3、实数a、b在数轴上对应点的位置如图所示,化简的值是_· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·4、已知x24x10,则代数式(2x3)2(xy)(xy)y2_5、如图,中,将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是_三、解答题(5小题,每小题10分,共计50分)1、如图,在中,动点P从点A出发,沿AB以每秒4个单位长度的速度向终点B运动过点P作交AC或BC于点Q,分别过点P、Q作AC、AB的平行线交于点M设与重叠部分的面积为S,点P运动的时间为秒(1)当点Q在AC上时,CQ的长为_(用含t的代数式表示)(2)当点M落在BC上时,求t的值(3)当与的重合部分为三角形时,求S与t之间的函数关系式(4)点N为PM中点,直接写出点N到的两个顶点的距离相等时t的值2、如图,在ABC中,已知AD平分BAC,E是边AB上的一点,AEAC,F是边AC上的一点,联结DE、CE、FE,当EC平分DEF时,猜测EF、BC的位置关系,并说明理由(完成以下说理过程)解:EF、BC的位置关系是_说理如下:因为AD是BAC的角平分线(已知)所以12在AED和ACD中,所以AEDACD(SAS)得_(全等三角形的对应边相等)3、定义一种新运算“”,规定:等式右边的运算就是加、减、乘、除四则运算,例如:,(1)求的值;(2)若,求x的值4、已知,点在边上,点是边上一动点,以线段为边在上方作等边,连接、,再以线段为边作等边(点、在的同侧),作于点· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(1)如图1,依题意补全图形;求的度数;(2)如图2,当点在射线上运动时,用等式表示线段与之间的数量关系,并证明5、已知点P(m,4)在反比例函数的图像上,正比例函数的图像经过点P和点Q(6,n)(1)求正比例函数的解析式;(2)求P、Q两点之间的距离(3)如果点M在y轴上,且MPMQ,求点M的坐标-参考答案-一、单选题1、A【分析】只含有1个未知数,并且未知数的最高次数为2的整式方程就是一元二次方程,依据定义即可判断【详解】解:A、只含有一个未知数,未知数的最高次数是2,二次项系数不为0,是一元二次方程,符合题意;B、未知数最高次数是3,不是关于x的一元二次方程,不符合题意;C、为分式方程,不符合题意;D、含有两个未知数,不是一元二次方程,不符合题意故选:A【点睛】本题考查了一元二次方程的定义,一元二次方程只含有一个未知数,未知数的最高次数是2,为整式方程;特别注意二次项系数不为02、D【分析】如图所示:过点作于点,交于点,过点作于点,则,此时最小,再利用等面积法求解最小值即可.【详解】解:如图所示:过点作于点,交于点,过点作于点,平分,在中,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·,即的最小值是4.8,故选:D【点睛】本题考查的是垂线段最短,角平分线的性质定理的应用,等面积法的应用,确定取最小值时点的位置是解本题的关键.3、C【分析】根据题意画出图形,再分点C在线段AB上或线段AB的延长线上两种情况进行讨论【详解】解:点C在线段AB上时,如图:AB7,ACBC43,AC4,BC3,点D为线段AC的中点,ADDC2,BDDC+BC5;点C在线段AB的延长线上时,AB7,ACBC43,设BC3x,则AC4x,AC-BC=AB,即4x-3x=7,解得x=7,BC21,则AC28,点D为线段AC的中点,ADDC14,BDAD-AB7;综上,线段BD的长为5或7故选:C【点睛】本题考查了两点间的距离,线段中点的定义,利用线段的比例得出AC、BC的长是解题关键,要分类讨论,以防遗漏4、B【分析】根据正多边形的每一个内角相等,则对应的外角也相等,根据多边形的外角和为360°,进而求得一个外角的度数,即可求得正八边形每个内角度数【详解】解:正多边形的每一个内角相等,则对应的外角也相等,一个外角等于:内角为· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·故选B【点睛】本题考查了正多边形的内角与外角的关系,利用外角求内角是解题的关键5、C【分析】解不等式组得到,利用不等式组有且仅有3个整数解得到,再解分式方程得到,根据解为负整数,得到a的取值,再取共同部分即可【详解】解:解不等式组得:,不等式组有且仅有3个整数解,解得:,解方程得:,方程的解为负整数,a的值为:-13、-11、-9、-7、-5、-3,符合条件的整数a为:-13,-11,-9,共3个,故选C【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解也考查了解一元一次不等式组的整数解6、C【分析】由,令,再逐一通过计算判断各选项,从而可得答案.【详解】解:当,时,故A不符合题意;,故B不符合题意;而 故C符合题意;故D不符合题意故选:C【点睛】本题考查的是利用特值法判断分式的变形,同时考查分式的基本性质,掌握“利用特值法解决选择题或填空题”是解本题的关键.7、C【分析】把(-2,-4)代入函数y=ax2中,即可求a【详解】解:把(-2,-4)代入函数y=ax2,得· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·4a=-4,解得a=-1故选:C【点睛】本题考查了点与函数的关系,解题的关键是代入求值8、D【分析】根据多项式乘以多项式展开,根据多项式相等即可求得对应字母的值,进而代入代数式求解即可【详解】解:,解得:,故选:D【点睛】本题考查了多项式乘以多项式,负整数指数幂,掌握以上知识是解题的关键9、B【分析】根据绝对值,合并同类项和乘方法则分别计算即可【详解】解:A、,故选项错误;B、,故选项正确;C、不能合并计算,故选项错误;D、,故选项错误;故选B【点睛】本题考查了绝对值,合并同类项和乘方,掌握各自的定义和运算法则是必要前提10、D【分析】把分式方程转化为整式方程,分分母为零无解,分母为零时,对应的字母值求解【详解】,当m+4=0时,方程无解,故m= -4;当m+40,x=2时,方程无解,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·故m=0;当m+40,x= -2时,方程无解,故m=-8;m的值为0或8或4,故选D【点睛】本题考查了分式方程的无解,正确理解无解的条件和意义是解题的关键二、填空题1、且【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解【详解】解:由题意得,x10且x0,解得x1且x0,故答案为:且【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数2、8【分析】根据“极差”的定义,求出最大值与最小值的差即可【详解】解:最大值与最小值的差为极差,所以极差为10-2=8,故答案为:8【点睛】本题考查了极差,掌握一组数据中最大值与最小值的差即为极差是正确判断的前提3、b【分析】根据数轴,b0,a0,则a-b0,化简绝对值即可【详解】b0,a0,a-b0,=b-a+a=b,故答案为:b【点睛】本题考查了绝对值的化简,正确确定字母的属性是化简的关键4、12【分析】化简代数式,将代数式表示成含有的形式,代值求解即可【详解】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·解:将代入得代数式的值为12故答案为:12【点睛】本题考查了完全平方公式、平方差公式以及代数式求值解题的关键在于正确的化简代数式5、【分析】如图(见解析),过点作轴于点,点作轴于点,设,从而可得,先利用勾股定理可得,从而可得,再根据旋转的性质可得,然后根据三角形全等的判定定理证出,最后根据全等三角形的性质可得,由此即可得出答案【详解】解:如图,过点作轴于点,点作轴于点,设,则,在中,在中,解得,由旋转的性质得:,在和中,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·,故答案为:【点睛】本题考查了勾股定理、旋转、点坐标等知识点,画出图形,通过作辅助线,正确找出两个全等三角形是解题关键三、解答题1、(1);(2);(3)当,;当时,(4),【分析】(1)根据C=90°,AB=5,AC=4,得cosA=,即,又因为AP=4t,AQ=5t,即可得答案;(2)由AQPM,APQM,可得,证CQMCAB,可得答案;(3)当时,根据勾股定理和三角形面积可得;当,PQM与ABC的重合部分不为三角形;当时,由S=SPQB-SBPH计算得;(4)分3中情况考虑,当N到A、C距离相等时,过N作NEAC于E,过P作PFAC于F,在RtAPF中,cosA = ,解得t = ,当N到A、B距离相等时,过N作NGAB于G,同理解得t = ,当N到B、C距离相等时,可证明AP=BP=AB=,可得答案【详解】(1)如下图:C=90°,AB=5,AC=4,cosA=PQAB,cosA=动点P从点A出发,沿AB以每秒4个单位长度的速度向终点B运动,点P运动的时间为t(t>0)秒,AP=4t,AQ=5t,CQ=AC-AQ=4-5t,故答案为:4-5t;(2)AQPM,APQM,四边形AQMP是平行四边形· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·当点M落在BC上时,APQM,CQMCAB,当点M落在BC上时,;(3)当时,此时PQM与ABC的重合部分为三角形,由(1)(2)知:,PQ=,PQM=QPA=90°,当Q与C重合时,CQ=0,即4-5t=0,当,PQM与ABC的重合部分不为三角形,当时,如下图:,PB=5-4t,PMAC,即,S=SPQB-SBPH,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · · 综上所述:当,;当时,(4)当N到A、C距离相等时,过N作NEAC于E,过P作PFAC于F,如图:N到A、C距离相等,NEAC,NE是AC垂直平分线,AE=AC= 2,N是PM中点,PN=PM=AQ= AF=AE- EF=2- 在RtAPF中,cosA = 解得t = 当N到A、B距离相等时,过N作NGAB于G,如图:AG=AB=PG=AG-AP=-4tcosNPG=cosA= 而PN=PM=AQ=t 解得t = 当N到B、C距离相等时,连接CP,如图:PMAC,ACBCPMBC,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·N到B、C距离相等,N在BC的垂直平分线上,即PM是BC的垂直平分线,PB= PC,PCB=PBC,90°-PCB= 90°-PBC,即PCA=PAC,PC= PA,AP=BP=AB=,t= 综上所述,t的值为或或【点睛】本题考查三角形综合应用,涉及平行四边形、三角形面积、垂直平分线等知识,解题的关键是分类画出图形,熟练应用锐角三角函数列方程2、EFBC,DEDC【分析】先利用AEDACD得到34,利用角的平分线,转化为一对相等的内错角,继而判定直线的平行【详解】解:EF、BC的位置关系是EFBC理由如下:如图,AD是BAC的角平分线(已知)12在AED和ACD中,AEDACD(SAS)DEDC(全等三角形的对应边相等),34EC平分DEF(已知),3545所以EFBC(内错角相等,两直线平行)故答案为:EFBC,12,AD=AD,DEDC【点睛】本题考查了三角形的全等和性质,角的平分线即从角的顶点出发的射线把这个角分成相等的两个角,等腰三角形的性质,平行线的判定,熟练掌握灯光要三角形的性质,平行线的判定是解题的关键3、(1)-43· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(2)3【分析】(1)根据定义变形,计算可得结果;(2)根据定义变形,得到方程,求出x值即可【小题1】解:由题意可得:=;【小题2】=2解得:x=3【点睛】本题考查了新定义运算,理解定义,结合新定义,能将所求问题转化为一元一次方程是解题的关键4、(1)见解析;BPH=90°(2),证明见解析【分析】(1)按照题意作图即可由等边三角形性质及平角为180°即可求得(2)由(1)知是等边三角形可证得是等边三角形,即可由边角边证得,再由直角三角形的性质以及平角的性质可推得(1)如图所示,即为所求;以B、O为圆心,OB长为半径,画弧交于点C,连接OC,BC,即为等边三角形是等边三角形,;(2)· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·,证明如下:如图,连接,由(1)可知,是等边三角形,是等边三角形,在中,【点睛】本题考查了三角形内的综合问题,包括尺规作图,全等三角形的证明及性质,等边三角形的性质等,两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“”),等边三角形三边相等,且每个角都等于60°,在直角三角形中,如果一个锐角等于,那么它所对的直角边等于斜边的一半熟悉其判定及性质是解题的关键5、(1)(2)5(3)【分析】(1)先将点的坐标代入反比例函数解析式求得的值,再待定系数法求正比例函数解析式即可;(2)根据正比例函数解析式求得点的坐标,进而两点距离公式求解即可;(3)根据题意作的垂直平分线,设,勾股定理建立方程,解方程求解即可(1)解:点P(m,4)在反比例函数的图像上,解得设正比例函数为· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·将点代入得正比例函数为(2)将点Q(6,n)代入,得(3)如图,设的中点为,过点作交轴于点,设则,即是直角三角形即解得【点睛】本题考查了正比例函数与反比例函数综合,待定系数法求解析式,勾股定理求两点之间的距离,垂直平分线的性质,综合运用以上知识是解题的关键