2021-2022学年京改版八年级数学下册第十五章四边形定向测评试题(无超纲).docx
-
资源ID:28168596
资源大小:618.87KB
全文页数:24页
- 资源格式: DOCX
下载积分:9金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年京改版八年级数学下册第十五章四边形定向测评试题(无超纲).docx
京改版八年级数学下册第十五章四边形定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列四个图案中,是中心对称图形的是()ABCD2、已知正多边形的一个外角等于45°,则该正多边形的内角和为()A135°B360°C1080°D1440°3、若一个正多边形的每一个外角都等于36°,则这个正多边形的边数是()A7B8C9D104、下列图形既是中心对称图形,又是轴对称图形的是( )ABCD5、在方格纸中,选择标有序号中的一个小正方形涂黑,使其与图中阴影部分构成中心对称图形该小正方形的序号是()ABCD6、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()AAB=BEBDEDCCADB=90°DCEDE7、如图,在长方形ABCD中,AB10cm,点E在线段AD上,且AE6cm,动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,同时点Q在线段BC上以vcm/s的速度由点B向点C运动,当EAP与PBQ全等时,v的值为()A2B4C4或D2或8、下图是文易同学答的试卷,文易同学应得( )A40分B60分C80分D100分9、下列测量方案中,能确定四边形门框为矩形的是( )A测量对角线是否互相平分B测量两组对边是否分别相等C测量对角线是否相等D测量对角线交点到四个顶点的距离是否都相等10、下列说法中,不正确的是( )A四个角都相等的四边形是矩形B对角线互相平分且平分每一组对角的四边形是菱形C正方形的对角线所在的直线是它的对称轴D一组对边相等,另一组对边平行的四边形是平行四边形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、过多边形的一个顶点作对角线,可将多边形分成5个三角形,则多边形的边数是_2、如图,在矩形ABCD中,AB3,BC4,点P是对角线AC上一点,若点P、A、B组成一个等腰三角形时,PAB的面积为_3、若点P(m1,5)与点Q(3,n)关于原点成中心对称,则mn的值是_4、如图,矩形的对角线、相交于点,分别以点、为圆心,长为半径画弧,分别交、于点、若,则图中阴影部分的面积为_(结果保留)5、如图,点A,B,C在O上,四边形OABC是平行四边形,若对角线AC2,则的长为 _三、解答题(5小题,每小题10分,共计50分)1、如图,在RtABC中,ACB90°(1)作AB的垂直平分线l,交AB于点D,连接CD,分别作ADC,BDC的平分线,交AC,BC于点E,F(尺规作图,不写作法,保作图痕迹);(2)求证:四边形CEDF是矩形2、如图,在中,AE平分,于点E,点F是BC的中点(1)如图1,BE的延长线与AC边相交于点D,求证:(2)如图2,中,求线段EF的长3、如图,在长方形中,动点沿着的方向运动,到点运动停止,设点运动的路程为,的面积为(1)点在边上,求关于的函数表达式(2)点在边上,的面积是否发生变化?请说明理由(3)点在边上,的面积是否发生变化?如果发生变化,求出面积的变化范围,并写出关于的函数表达式;如果没有发生变化,求出此时的面积4、如图,在菱形ABCD中,点E,F分别是边AB和BC上的点,且BEBF求证:DEFDFE5、在中,斜边,过点作,以AB为边作菱形ABEF,若,求的面积-参考答案-一、单选题1、A【分析】中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可【详解】解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,故选:A【点睛】本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键2、C【分析】先利用正多边形的每一个外角为 求解正多边形的边数,再利用正多边形的内角和公式可得答案.【详解】解: 正多边形的一个外角等于45°, 这个正多边形的边数为: 这个多边形的内角和为: 故选C【点睛】本题考查的是正多边形内角和与外角和的综合,熟练的利用正多边形的外角的度数求解正多边形的边数是解本题的关键.3、D【分析】根据多边形外角和定理求出正多边形的边数【详解】正多边形的每一个外角都等于36°,正多边形的边数10故选:D【点睛】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握4、D【分析】一个图形绕着某固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,这个固定点叫做对称中心;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据这两个概念逐项判断即可【详解】A、既不是中心对称图形,也不是轴对称图形,故不符合题意;B、是轴对称图形,但不是中心对称图形,故不符合题意;C、是中心对称图形,但不是轴对称图形,故不符合题意;D、既是中心对称图形,也是轴对称图形,故符合题意【点睛】本题考查了中心对称图形与轴对称图形的识别,掌握它们的概念是关键5、B【分析】利用中心对称图形的定义判断即可【详解】解:根据中心对称图形的定义可知,满足条件故选:【点睛】本题主要考查了利用旋转设计图案和中心对称图形的定义,明确将一个图形绕一点旋转180°后与本身重合的图形叫做中心对称图形是解题的关键6、B【分析】先证明四边形BCED为平行四边形,再根据矩形的判定进行解答【详解】解:四边形ABCD为平行四边形,ADBC,且AD=BC,又AD=DE,DEBC,且DE=BC,四边形BCED为平行四边形,A、AB=BE,DE=AD,BDAE,DBCE为矩形,故本选项不符合题意;B、DEDC,EDB=90°+CDB90°,四边形DBCE不能为矩形,故本选项符合题意;C、ADB=90°,EDB=90°,DBCE为矩形,故本选项不符合题意;D、CEDE,CED=90°,DBCE为矩形,故本选项不符合题意故选:B【点睛】本题考查了平行四边形的判定和性质、矩形的判定等知识,判定四边形BCED为平行四边形是解题的关键7、D【分析】根据题意可知当EAP与PBQ全等时,有两种情况:当EA=PB时,APEBQP,当AP=BP时,AEPBQP,分别按照全等三角形的性质及行程问题的基本数量关系求解即可【详解】解:当EAP与PBQ全等时,有两种情况:当EA=PB时,APEBQP(SAS),AB=10cm,AE=6cm,BP=AE=6cm,AP=4cm,BQ=AP=4cm;动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,点P和点Q的运动时间为:4÷2=2s,v的值为:4÷2=2cm/s;当AP=BP时,AEPBQP(SAS),AB=10cm,AE=6cm,AP=BP=5cm,BQ=AE=6cm,5÷2=2.5s,2.5v=6,v=故选:D【点睛】本题考查矩形的性质及全等三角形的判定与性质等知识点,注意数形结合和分类讨论并熟练掌握相关性质及定理是解题的关键8、B【分析】分别根据菱形的判定与性质、正方形的判定、矩形的判定与性质进行判断即可【详解】解:(1)根据对角线互相垂直的平行四边形是菱形可知(1)是正确的;(2)根据根据对角线互相垂直且相等的平行四边形是正方形可知(2)是正确的;(3)根据对角线相等的平行四边形是矩形可知(3)是正确的;(4)根据菱形的对角线互相垂直,不一定相等可知(4)是错误的;(5)根据矩形是中心对称图形,对角线的交点是对称中心,并且矩形的对角线相等且互相平分可知,矩形的对称中心到四个顶点的距离相等是正确的,文易同学答对3道题,得60分,故选:B【点睛】本题考查菱形的判定与性质、正方形的判定、矩形的判定与性质,熟练掌握特殊四边形的判定与性质是解答的关键9、D【分析】由平行四边形的判定与性质、矩形的判定分别对各个选项进行判断即可【详解】解:A、对角线互相平分的四边形是平行四边形,对角线互相平分且相等的四边形才是矩形,选项A不符合题意;B、两组对边分别相等是平行四边形,选项B不符合题意;C、对角线互相平分且相等的四边形才是矩形,对角线相等的四边形不是矩形,选项C不符合题意;D、对角线交点到四个顶点的距离都相等,对角线互相平分且相等,对角线互相平分且相等的四边形是矩形,选项D符合题意;故选:D【点睛】本题考查了矩形的判定、平行四边形的判定与性质、解题的关键是熟记矩形的判定定理10、D【分析】根据矩形的判定,正方形的性质,菱形和平行四边形的判定对各选项分析判断后利用排除法求解【详解】解:A、四个角都相等的四边形是矩形,说法正确;B、正方形的对角线所在的直线是它的对称轴,说法正确;C、对角线互相平分且平分每一组对角的四边形是菱形,说法正确;D、一组对边相等且平行的四边形是平行四边形,原说法错误;故选:D【点睛】本题主要考查特殊平行四边形的判定与性质,熟练掌握特殊平行四边形相关的判定与性质是解答本题的关键二、填空题1、7【分析】根据n边形从一个顶点出发可引出(n3)条对角线,可组成(n2)个三角形,依此可得n的值【详解】解:设多边形的边数为n,由题意得,n25,解得:n7,即这个多边形是七边形故答案为:7【点睛】本题考查了多边形的对角线,求对角线条数时,直接代入边数n的值计算,而计算边数时,需利用方程思想,解方程求n2、或或3【分析】过B作BMAC于M,根据矩形的性质得出ABC90°,根据勾股定理求出AC,根据三角形的面积公式求出高BM,分为三种情况:ABBP3,ABAP3,APBP,分别画出图形,再求出面积即可【详解】解:四边形ABCD是矩形,ABC90°,由勾股定理得:,有三种情况:当ABBP3时,如图1,过B作BMAC于M,SABC,解得:,ABBP3,BMAC,APAM+PM,PAB的面积;当ABAP3时,如图2,BM,PAB的面积S;作AB的垂直平分线NQ,交AB于N,交AC于P,如图3,则APBP,BNAN,四边形ABCD是矩形,NQAC,PNBC,ANBN,APCP,PAB的面积;即PAB的面积为或或3故答案为:或或3【点睛】本题主要是考查了矩形的性质、等腰三角形的判定以及勾股定理求边长,熟练掌握矩形的性质,利用等腰三角形的判定,分成三种情况讨论,是解决本题的关键3、9【分析】根据关于原点对称点的坐标特征求出、的值,再代入计算即可【详解】解:点与点关于原点成中心对称,即,故答案为:9【点睛】本题考查关于原点对称的点坐标特征,解题的关键是掌握关于原点对称的点坐标特征,即纵坐标互为相反数,横坐标也互为相反数4、#【分析】由图可知,阴影部分的面积是扇形AEO和扇形CFO的面积之和【详解】解:四边形是矩形,图中阴影部分的面积为:故答案为:【点睛】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答5、【分析】连接OB,交AC于点D,根据有一组邻边相等的平行四边形是菱形,可得四边形OABC为菱形,根据菱形的性质可得:,根据等边三角形的判定得出为等边三角形,由此得出,在直角三角形中利用勾股定理即可确定圆的半径,然后代入弧长公式求解即可【详解】解:如图所示,连接OB,交AC于点D,四边形OABC为平行四边形,四边形OABC为菱形, ,为等边三角形,在中,设,则,即,解得:或(舍去),的长为:,故答案为:【点睛】题目主要考查菱形的判定和性质,等边三角形的判定和性质,勾股定理,弧长公式等,熟练掌握各个定理和公式是解题关键三、解答题1、(1)见解析(2)见解析【分析】(1)利用垂直平分线和角平分线的尺规作图法,进行作图即可(2)利用直角三角形斜边中线性质,以及角平分线的性质直接证明与都是,最后加上,即可证明结论【详解】(1)答案如下图所示:分别以A、B两点为圆心,以大于长为半径画弧,连接弧的交点的直线即为垂直平分线l,其与AB的交点为D,以点D为圆心,适当长为半径画弧,分别交DA于点M,交CD于点N,交BD于点T,然后分别以点M,N为圆心,大于为半径画弧,连接两弧交点与D点的连线交AC于点E,同理分别以点T,N为圆心,大于为半径画弧,连接两弧交点与D点的连线交BC于点F(2)证明:点是AB与其垂直平分线l的交点,点是AB的中点,是RtABC上的斜边的中线,DE、DF分别是ADC,BDC的角平分线, , , , , 在四边形CEDF中, 四边形CEDF是矩形【点睛】本题主要是考查了尺规作图、直角三角形斜边中线性质以及矩形的判定,熟练利用直角三角形斜边中线性质,找到三角形全等的判定条件,并且选择合适的矩形判定条件,是解决本题的关键2、(1)见解析;(2)2【分析】(1)利用ASA定理证明AEBAED,得到BE=ED,AD=AB,根据三角形中位线定理解答;(2)分别延长BE、AC交于点H,仿照(1)的过程解答【详解】解:(1)证明:AE平分,BAE=DAE,AEB=AED=90°,在AEB和AED中,AEBAED(ASA)BE=ED,AD=AB,点F是BC的中点,BF=FC,EF是BCD的中位线,EF=CD=(AC-AD)=(AC-AB);(2)解:分别延长BE、AC交于点H,AE平分,BAE=DAE,AEB=AED=90°,在AEB和AEH中,AEBAEH(ASA)BE=EH,AH=AB=9,点F是BC的中点,BF=FC,EF是BCD的中位线,EF=CH=(AH-AC)=2【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键3、(1);(2)的面积不发生变化,理由见解析;(3)的面积发生变化,【分析】(1)由题意可求出的长,利用三角形的面积公式即可得到求与的关系式;(2)当点在上运动时,的面积不发生改变,过点作于点,利用三角形的面积公式可得的面积为18,是个定值;(3)先求出的长,再利用三角形的面积公式可得与的函数关系式,然后利用点在上可得出的范围,由此即可得出面积的变化范围【详解】解:(1)在长方形中,由题意知,当点在边上时,且,;(2)的面积不发生变化理由如下:如图,过点作于点,则,是一个定值,所以的面积不发生变化;(3)的面积发生变化,求解过程如下:当点在边上时,且,即【点睛】本题考查了一次函数的几何应用、长方形的性质等知识点,熟练掌握一次函数的求解方法是解题关键4、见解析【分析】根据菱形的性质可得AB=BC=CD=AD,A=C,再由BE=BF,可推出AE=CF,即可利用SAS证明ADECDF得到DE=DF,则DEF=DFE【详解】解:四边形ABCD是菱形,AB=BC=CD=AD,A=C,BE=BF,AB-BE=BC-BF,即AE=CF,ADECDF(SAS),DE=DF,DEF=DFE【点睛】本题主要考查了菱形的性质,全等三角形的性质与判定,等腰三角形的性质与判定,解题的关键在于能够熟练掌握菱形的性质5、4【分析】分别过点E、C作EH、CG垂直AB,垂足为点H、G,则CG是斜边AB上的高;在菱形ABEF中, 利用平行线的性质不难得到CG=EH;菱形的对角相等,四条边相等,联系含30°角的直角三角形的性质求出EH,问题即可解答。【详解】解:如图,分别过作垂足为点 四边形ABEF为菱形,在中, ,根据题意,根据平行线间的距离处处相等, .答:的面积为.【点睛】本题考查了菱形的性质,直角三角形的性质,平行线间的距离及三角形面积的计算,正确利用菱形的四边相等及直角三角形中,30角所对直角边是斜边的一半是解题的关键