欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    人教版八年级数学下册第十八章-平行四边形难点解析试题(含详细解析).docx

    • 资源ID:28168798       资源大小:515.41KB        全文页数:28页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    人教版八年级数学下册第十八章-平行四边形难点解析试题(含详细解析).docx

    人教版八年级数学下册第十八章-平行四边形难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要纽带数学家欧几里得利用如图验证了勾股定理:以直角三角形ABC的三条边为边长向外作正方形ACHI,正方形ABED,正方形BCGF,连接BI,CD,过点C作CJDE于点J,交AB于点K设正方形ACHI的面积为S1,正方形BCGF的面积为S2,长方形AKJD的面积为S3,长方形KJEB的面积为S4,下列结论:BICD;2SACDS1;S1S4S2S3;其中正确的结论有( )A1个B2个C3个D4个2、如图,正方形的面积为256,点F在上,点E在的延长线上,的面积为200,则的长为( )A10B11C12D153、如图所示,在矩形ABCD中,已知AEBD于E,DBC30°,BE=1cm,则AE的长为( )A3cmB2cmC2cmDcm4、如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A2.5B2CD5、如图,菱形ABCD的对角线AC、BD的长分别为6和8,O为AC、BD的交点,H为AB上的中点,则OH的长度为( )A3B4C2.5D56、如图所示,ABCD,ADBC,则图中的全等三角形共有( )A1对B2对C3对D4对7、如图,点E是长方形ABCD的边CD上一点,将ADE沿着AE对折,点D恰好折叠到边BC上的F点,若AD10,AB8,那么AE长为()A5B12C5D138、如图所示,在 ABCD中,对角线AC,BD相交于点O,过点O的直线EF分别交AD于点E,BC于点F, ,则 ABCD的面积为(       ) A24B32C40D489、如图,矩形ABCD的面积为1cm2,对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B,;依此类推,则平行四边形AO2014C2015B的面积为( )cmA B C D10、已知菱形的边长为6,一个内角为60°,则菱形较长的对角线长是()ABC3D6第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,四边形AOBC是正方形,曲线CP1P2P3叫做“正方形的渐开线”,其中弧CP1,弧P1P2,弧P2P3,弧P3P4的圆心依次按点A,O,B,C循环,点A的坐标为(2,0),按此规律进行下去,则点P2021的坐标为 _2、如图,在矩形ABCD中,AB2,AD2,E为BC边上一动点,F、G为AD边上两个动点,且FEG30°,则线段FG的长度最大值为 _3、如图,在中,点、分别是三边的中点,且,则的长度是_4、已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是_5、如图,菱形ABCD的两条对角线长分别为AC6,BD8,点P是BC边上的一动点,则AP的最小值为 _三、解答题(5小题,每小题10分,共计50分)1、如图,将直角三角形分割成一个正方形和两对全等的直角三角形,在RtABC中,ACB90°,四边形FCEO是正方形,RtAOFRtAOD,RtBOERtBOD若设正方形的边长为x,则可以探究x与直角三角形ABC的三边a,b,c之间的关系探究:RtBOERtBOD,BDBEax,RtAOFRtAOD,ADAFbx,ABBD+AD,ax+bxc,x(1)小颖同学发现利用SABCSAOB+SAOC+SBOC也可以探究正方形的边长x与直角三角形ABC的三边a,b,c之间的关系请你根据小颖的思路,完成她的探究过程(2)请你结合探究和小颖的解答过程验证勾股定理2、如图:在中,点为的中点,点为直线上的动点(不与点,重合),连接,以为边在的上方作等边,连接(1)是_三角形;(2)如图1,当点在边上时,运用(1)中的结论证明;(3)如图2,当点在的延长线上时,(2)中的结论是否依然成立?若成立,请加以证明,若不成立,请说明理由3、如图,四边形ABCD是平行四边形,BAC90°(1)尺规作图:在BC上截取CE,使CECD,连接DE与AC交于点F,过点F作线段AD的垂线交AD于点M;(不写作法,保留作图痕迹)(2)在(1)的条件下,猜想线段FM和CF的数量关系,并证明你的结论4、如图,四边形ABCD是平行四边形,E,F是对角线AC的三等分点,连接BE,DF证明BE=DF5、如图,ABCD是平行四边形,AD4,AB5,点A的坐标为(2,0),求点B、C、D的坐标-参考答案-一、单选题1、C【解析】【分析】根据SAS证ABIADC即可得证正确,过点B作BMIA,交IA的延长线于点M,根据边的关系得出SABIS1,即可得出正确,过点C作CNDA交DA的延长线于点N,证S1S3即可得证正确,利用勾股定理可得出S1+S2S3+S4,即能判断不正确【详解】解:四边形ACHI和四边形ABED都是正方形,AIAC,ABAD,IACBAD90°,IAC+CABBAD+CAB,即IABCAD,在ABI和ADC中,ABIADC(SAS),BICD,故正确;过点B作BMIA,交IA的延长线于点M,BMA90°,四边形ACHI是正方形,AIAC,IAC90°,S1AC2,CAM90°,又ACB90°,ACBCAMBMA90°,四边形AMBC是矩形,BMAC,SABIAIBMAIACAC2S1,由知ABIADC,SACDSABIS1,即2SACDS1,故正确;过点C作CNDA交DA的延长线于点N,CNA90°,四边形AKJD是矩形,KADAKJ90°,S3ADAK,NAKAKC90°,CNANAKAKC90°,四边形AKCN是矩形,CNAK,SACDADCNADAKS3,即2SACDS3,由知2SACDS1,S1S3,在RtACB中,AB2BC2+AC2,S3+S4S1+S2,又S1S3,S1+S4S2+S3, 即正确;在RtACB中,BC2+AC2AB2,S3+S4S1+S2,故错误;综上,共有3个正确的结论,故选:C【点睛】本题主要考查勾股定理,正方形的性质,矩形性质,全等三角形的判定和性质等知识,熟练掌握勾股定理和全等三角形的判定和性质是解题的关键2、C【解析】【分析】先证明RtCDFRtCBE,故CE=CF,根据CEF的面积计算CE,根据正方形ABCD的面积计算BC,根据勾股定理计算BE【详解】解:ECF=90°,DCB=90°,BCE=DCF,CDFCBE,故CF=CE因为RtCEF的面积是200,即CECF=200,故CE=20,正方形ABCD的面积=BC2=256,得BC=16根据勾股定理得:BE=12故选:C【点睛】本题考查了正方形,等腰直角三角形面积的计算,考查了直角三角形中勾股定理的运用,本题中求证CF=CE是解题的关键3、D【解析】【分析】根据矩形和直角三角形的性质求出BAE=30°,再根据直角三角形的性质计算即可【详解】解:四边形ABCD是矩形,BAD=90°,BDA=DBC=30°,AEBD,DAE=60°,BAE=30°,在RtABE中,BAE=30°,BE=1cm,AB=2cm,AE=(cm),故选:D【点睛】本题考查了矩形的性质,含30度角的直角三角形的性质,熟记各图形的性质并准确识图是解题的关键4、D【解析】【分析】利用矩形的性质,求证明,进而在中利用勾股定理求出的长度,弧长就是的长度,利用数轴上的点表示,求出弧与数轴交点表示的实数即可【详解】解:四边形OABC是矩形,在中,由勾股定理可知:, ,弧长为,故在数轴上表示的数为,故选:【点睛】本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形,然后通过勾股定理求边长,是解决该类问题的关键5、C【解析】【分析】根据菱形的性质求得边长,进而根据三角形中位线定理求得的长度【详解】四边形ABCD是菱形,AOOC,OBOD,AOBO,又点H是AD中点,OH是DAB的中位线,在RtAOB中,AB5,则OHAB=2.5故选C【点睛】本题考查了菱形的性质,三角形中位线定理,求得的长是解题的关键6、D【解析】【分析】根据平行四边形的判定与性质,求解即可【详解】解:ABCD,ADBC四边形为平行四边形,、又,、图中的全等三角形共有4对故选:D【点睛】此题考查了平行四边形的判定与性质,全等三角形的判定与性质,解题的关键是掌握平行四边形的判定与性质7、C【解析】【分析】根据矩形的性质,折叠的性质,勾股定理即可得到结论【详解】解:四边形ABCD是矩形,将ADE沿着AE对折,点D恰好折叠到边BC上的F点,故选:C【点睛】本题考查了翻折变换,矩形的性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题8、B【解析】【分析】先根据平行四边形的性质可得,再根据三角形全等的判定定理证出,根据全等三角形的性质可得,从而可得,然后根据平行四边形的性质即可得【详解】解:四边形是平行四边形,在和中,则的面积为,故选:B【点睛】本题考查了平行四边形的性质、三角形全等的判定定理与性质等知识点,熟练掌握平行四边形的性质是解题关键9、C【解析】【分析】根据“同底等高”的原则可知平行四边形AOC1B底边AB上的高等于BC的,则有平行四边形AOC1B的面积,平行四边形AOC2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,则有平行四边形ABC3O2的面积,;由此规律可进行求解【详解】解:O1为矩形ABCD的对角线的交点,平行四边形AOC1B底边AB上的高等于BC的,平行四边形AOC1B的面积=×1=,平行四边形AO1C2B的对角线交于点O2,平行四边形AOC2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,平行四边形ABC3O2的面积=××1=,依此类推,平行四边形ABC2014O2015的面积=cm2故答案为:C【点睛】本题主要考查矩形的性质与平行四边形的性质,熟练掌握矩形的性质与平行四边形的性质是解题的关键10、B【解析】【分析】根据一个内角为60°可以判断较短的对角线与两邻边构成等边三角形,求出较长的对角线的一半,再乘以2即可得解【详解】解:如图,菱形ABCD,ABC=60°,AB=BC,ACBD,OB=OD,ABC是等边三角形,菱形的边长为6,AC6,AOAC3,在RtAOB中,BO3,菱形较长的对角线长BD是:2×36故选:B【点睛】本题考查了菱形的性质和勾股定理,等边三角形的判定,解题关键是熟练运用菱形的性质和等边三角形的判定求出对角线长二、填空题1、(4044,0)【解析】【分析】由题意可知:正方形的边长为2,分别求得,可发现点的位置是四个一循环,每旋转一次半径增加2,找到规律,即求得点P2021在x轴正半轴,进而求得OP的长度,即可求得点的坐标【详解】由题意可知:正方形的边长为2,A(2,0),B(0,2),C(2,2),P1(4,0),P2(0,4),P3(6,2),P4(2,10),P5(12,0),P6(0,12) 可发现点的位置是四个一循环,每旋转一次半径增加2,2021÷45051,故点P2021在x轴正半轴,OP的长度为2021×2+24044,即:P2021的坐标是(4044,0),故答案为:(4044,0)【点睛】本题考查了平面直角坐标系点的坐标规律,正方形的性质,找到点的位置是四个一循环,每旋转一次半径增加2的规律是解题的关键2、【解析】【分析】如图所示,在中,FG边的高为AB=2,FEG=30°,为定角定高的三角形,故当E与B点或C点重合,G与D点重合或F与A点重合时,FG的长度最大,则由矩形ABCD中,AB2,AD2可知,ABD=60°,故ABF=60°-30°=30°,则AF=,则FG=AD-AF=【详解】如图所示,在中,FG边的高为AB=2,FEG=30°,为定角定高的三角形故当E与B点或C点重合,G与D点重合或F与A点重合时,FG的长度最大矩形ABCD中,AB2,AD2ABD=60°ABF=60°-30°=30°AF=FG=AD-AF=故答案为:【点睛】本题考查了四边形中动点问题,图解法数学思想依据是数形结合思想 它的应用能使复杂问题简单化、 抽象问题具体化 特殊四边形的几何问题, 很多困难源于问题中的可动点 如何合理运用各动点之间的关系,同学们往往缺乏思路, 常常导致思维混乱实际上求解特殊四边形的动点问题,关键是是利用图解法抓住它运动中的某一瞬间,寻找合理的代数关系式, 确定运动变化过程中的数量关系, 图形位置关系, 分类画出符合题设条件的图形进行讨论, 就能找到解决的途径, 有效避免思维混乱3、【解析】【分析】根据中位线定理可得的长度,再根据直角三角形斜边上的中线等于斜边的一半即可求出的长度【详解】解:点、分别是三边的中点,且故答案为:【点睛】本题主要考查了三角形的中位线定理和直角三角形斜边上的中线,熟练掌握三角形的中位线定理和直角三角形斜边上的中线是解答本题的关键4、5【解析】【分析】直角三角形中,斜边长为斜边中线长的2倍,所以求斜边上中线的长求斜边长即可【详解】解:在直角三角形中,两直角边长分别为6和8,则斜边长10,斜边中线长为×105,故答案为 5【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,根据勾股定理求得斜边长是解题的关键5、4.8【解析】【分析】由垂线段最短,可得APBC时,AP有最小值,由菱形的性质和勾股定理可求BC的长,由菱形的面积公式可求解【详解】设AC与BD的交点为O,点P是BC边上的一动点,APBC时,AP有最小值,四边形ABCD是菱形,ACBD,AOCOAC3,BODOBD4,故答案为:4.8【点睛】本题考查了菱形的性质,勾股定理,确定当APBC时,AP有最小值是本题关键三、解答题1、(1),证明见解析 ;(2)见解析【分析】(1)由正方形的性质可得OF=OE,OFAC,OEBC,由RtAOFRtAOD,可以推出OE=OD=OE,再由可得,由此即可得到答案;(2)根据(1)和题目已知可得,由此利用完全平方公式和平方差公式求解即可【详解】解:(1)如图所示,连接OC四边形OECF是正方形,OF=OE,OFAC,OEBC,RtAOFRtAOD,OF=OD,OE=OD=OE,ACB=90°,即;(2),即【点睛】本题主要考查了正方形的性质,全等三角形的性质,平方差公式,完全平方公式,勾股定理的证明等等,解题的关键在于正确理解题意2、(1)等边;(2)见解析;(3)成立,理由见解析【分析】(1)根据含30度角的直角三角形的性质,直角三角形斜边上的中线等于斜边的一半可证明,即可证明OBC是等边三角形;(2)先证明,即可利用SAS证明,得到;(3)先证明,即可利用SAS证明,得到【详解】(1)ACB=90°,A=30°,O是AB的中点,OBC是等边三角形,故答案为:等边;(2)由(1)可知,是等边三角形,即,在和中,;(3)成立,证明:由(1)可知,是等边三角形,即,在和中,【点睛】本题主要考查了等边三角形的性质与判定,全等三角形的性质与判定,含30度角的直角三角形的性质,直角三角形斜边上的中线,熟练掌握等边三角形的性质与判定条件是解题的关键3、(1)图形见解析;(2),证明见解析【分析】(1)以C为圆心CD长为半径画弧于BC交点即为E;连DE与AC交点即为F;过F作AD的垂直平分线与AD交点即为M;(2)证明DF平分,再利用角平分线的性质判定即可【详解】(1)图形如下:(2),证明如下:由(1)可得:,CECD四边形ABCD是平行四边形ADBC,ABCD,即DF平分BAC90°【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了平行四边形的判定与性质4、见详解【分析】由题意易得AB=CD,ABCD,AE=CF,则有BAE=DCF,进而问题可求证【详解】证明:四边形ABCD是平行四边形,AB=CD,ABCD,BAE=DCF,E,F是对角线AC的三等分点,AE=CF,在ABE和CDF中,ABECDF(SAS),BE=DF【点睛】本题主要考查平行四边形的性质及全等三角形的性质与判定,熟练掌握平行四边形的性质及全等三角形的性质与判定是解题的关键5、【分析】根据,即可求得点,勾股定理求得即可求得点,再根据平行四边形的性质可得点坐标【详解】解:ABCD是平行四边形,轴,由题意可得,即,轴,、【点睛】此题考查了坐标与图形,涉及了勾股定理、平行四边形的性质,解题的关键是掌握并灵活运用相关性质进行求解

    注意事项

    本文(人教版八年级数学下册第十八章-平行四边形难点解析试题(含详细解析).docx)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开