2021-2022学年基础强化沪科版八年级下册数学期末模拟试题-卷(Ⅰ)(精选).docx
-
资源ID:28169197
资源大小:709.49KB
全文页数:30页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年基础强化沪科版八年级下册数学期末模拟试题-卷(Ⅰ)(精选).docx
· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·沪科版八年级下册数学期末模拟试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列二次根式中,化简后可以合并的是( )A和B和C和D和2、如图,在RtABC中,ACB=90°,CDAB,垂足为D,AF平分CAB,交CD于点E,交CB于点F若AC=3,AB=5,则线段DE的长为( )AB3CD13、如图是我国古代数学家赵爽在为周髀算经作注解时给出的“弦图”,它被第24届国际数学家大会选定为会徽,是国际数学界对我国古代数学伟大成就的肯定“弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,若直角三角形的两条直角边分别为a、b,大正方形边长为3,小正方形边长为1,那么ab的值为( )A3B4C5D64、为了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间条形统计图如图所示,则所调查学生睡眠时间的众数,中位数分别为()A7h,7hB8h,7.5hC7h,7.5hD8h,8h5、某公司欲招收职员一名,从学历、经验和工作态度三个方面对甲、乙、丙、丁四名应聘者进行了初步测试,测试成绩如表:应聘者项目甲乙丙丁学历8976经验6488工作态度7765如果将学历、经验和工作态度三项得分依次按30%,30%,40%的比例确定各人的最终得分,那么最终得分最高的是( )A甲B乙C丙D丁· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·6、下列二次根式中属于最简二次根式的是( )ABCD7、下列方程是一元二次方程的是( )ABCD8、如图,五根小木棒,其长度分别为5,9,12,13,15,现将它们摆成两个直角三角形,其中正确的是( )ABCD9、估计的值在( )A1到2之间B2到3之间C3到4之间D4到5之间10、点P(3,4)到坐标原点的距离是( )A3B4C4D5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,有一块直角三角形纸片,两直角边AC6cm,BC8cm,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,CD的长为_ 2、已知三角形的三边分别是6,8,10,则最长边上的高等于_3、观察下列各式的特点:,;,计算:+_4、的有理化因式可以是 _5、在ABCD中,AC与BD相交于点O,AOB=60°,BD=4,将ABC沿直线AC翻折后,点B落在点B处,那么DB的长为_三、解答题(5小题,每小题10分,共计50分)1、今年忠县柑橘喜获丰收,某果园销售的柑橘“忠橙”和“爱媛”很受消费者的欢迎,“忠橙”售价80元/箱,“爱媛”售价60元/箱在11月第一周“忠橙”的销量比“爱媛”的销量多100箱,且这两种柑橘的总销售额为50000元(1)在11月第一周,该果园“忠橙”和“爱媛”的销量各为多少箱?(2)为了扩大销售,11月第二周“忠橙”售价降价,销量比第一周培加了,“爱媛”售价不变,销量比第一周增加了,结果这两种相橘第二周的总销售额比第一周的总销售额增加了,求的值2、已知关于x的方程x(mx4)(x+2)(x2)(1)若方程只有一个根,求m的值并求出此时方程的根;· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(2)若方程有两个不相等的实数根,求m的值3、如图,是四边形ABCD的一个外角,点F在CD的延长线上,垂足为G(1)求证:DC平分;(2)如图,若,求的度数;直接写出四边形ABCF的面积4、正方形ABCD边长为6,点E在边AB上(点E与点A、B不重合),点F、G分别在边BC、AD上(点F与点B、C不重合),直线FG与DE相交于点H(1)如图1,若GHD=90°,求证:GF=DE;(2)在(1)的条件下,平移直线FG,使点G与点A重合,如图2联结DF、EF设CF=x,DEF的面积为y,用含x的代数式表示y;(3)如图3,若GHD=45°,且BE=2AE,求FG的长5、如图,点O是等边三角形ABC内的一点,将BOC绕点C顺时针旋转60°得ADC,连接OD(1)当时, °;(2)当时, °;(3)若,则OA的长为 -参考答案-一、单选题1、B【分析】先化简,再根据同类二次根式的定义解答即可【详解】解:、化简得:和不是同类二次根式,不能合并同类项,不符合题意;、化简得:和是同类二次根式,可以合并,不符合题意;、化简得:和,不是同类二次根式,不能合并同类项,不符合题意;· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·、和被开方数不同,不是同类二次根式,不符合题意;故选:B【点睛】本题主要考查了同类二次根式的定义,解题的关键是掌握化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式2、C【分析】过点F作FGAB于点G,由ACB=90°,CDAB,AF平分CAB,可得CAF=FAD,从而得到CE=CF,再由角平分线的性质定理,可得FC=FG,再证得,可得 ,然后设 ,则 ,再由勾股定理可得 ,然后利用三角形的面积求出 ,即可求解【详解】解:如图,过点F作FGAB于点G,ACB=90°,CDAB,CDA=90°,CAF+CFA=90°,FAD+AED=90°,AF平分CAB,CAF=FAD,CFA=AED=CEF,CE=CF,AF平分CAB,ACF=AGF=90°,FC=FG, ,AC=3,AB=5,ACB=90°,BC=4, ,设 ,则 , , ,解得: , , , , 故选:C【点睛】本题主要考查了勾股定理,角平分线的性质定理,等腰三角形的判定和性质,熟练掌握勾股定理,角平分线的性质定理,等腰三角形的判定和性质是解题的关键3、B· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·【分析】根据大正方形的面积是9,小正方形的面积是1,可得直角三角形的面积,即可求得ab的值【详解】解:大正方形边长为3,小正方形边长为1,大正方形的面积是9,小正方形的面积是1,一个直角三角形的面积是(9-1)÷4=2,又一个直角三角形的面积是ab=2,ab=4故选:B【点睛】本题考查了与弦图有关的计算,还要注意图形的面积和a,b之间的关系4、C【分析】权数最大的数据是众数,第25个,26个数据的平均数是中位数,计算即可【详解】7的权数是19,最大,所调查学生睡眠时间的众数是7小时,根据条形图,得第25个数据是7小时,第26个数据是8小时,所调查学生睡眠时间的中位数是=7.5小时,故选C【点睛】本题考查了条形统计图,中位数即数据排序后,中间的数或中间两位数的平均数;众数即数据中出现次数最多的数据,正确计算中位数是解题的关键5、A【分析】根据图表数据利用计算加权平均数的方法直接求出甲、乙、丙、丁四名应聘者的加权平均数,两者进行比较即可得出答案【详解】解:甲的最终得分:8×30%+6×30%+7×40%=7,乙的最终得分:9×30%+4×30%+7×40%=6.7,丙的最终得分:7×30%+8×30%+6×40%=6.9,丁的最终得分:6×30%+8×30%+5×40%=6.2,甲丙乙丁,故选A.【点睛】本题考查加权平均数的计算,掌握加权平均数的计算方法是解题的关键6、D【分析】利用最简二次根式的定义:被开方数不含分母,分母中不含根号,且被开方数不含能开的尽方的因数,判断即可【详解】解:A、,不符合题意;B、,不符合题意;C、,不符合题意;· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·D、是最简二次根式,符合题意故选:D【点睛】此题考查了最简二次根式,熟练掌握最简二次根式的定义是解本题的关键7、A【分析】由一元二次方程的定义判断即可【详解】A. 只含有一个未知数,并且是未知数的最高次数2的整式方程,是一元二次方程,符合题意,故正确B. 有两个未知数,不符合题意,故错误C. 不是整式方程,不符合题意,故错误D. 有两个未知数,不符合题意,故错误故选:A【点睛】本题考查了一元二次方程的定义,只含有一个未知数,并且未知数的最高次数2的整式方程,叫做一元二次方程8、C【分析】根据勾股定理的逆定理逐一判断即可【详解】A、对于ABD,由于,则此三角形不是直角三角形,同理ADC也不是直角三角形,故不合题意;B、对于ABC,由于,则此三角形不是直角三角形,同理ADC也不是直角三角形,故不合题意;C、对于ABC,由于,则此三角形是直角三角形,同理BDC也是直角三角形,故符合题意;D、对于ABC,由于,则此三角形不是直角三角形,同理BDC也不是直角三角形,故不合题意故选:C【点睛】本题考查了勾股定理的逆定理,其内容是:两条短边的平方和等于长边的平方,则此三角形是直角三角形,为便于利用平方差公式计算,常常计算两条长边的平方差即两条长边的和与这两条长边的差的积,若等于最短边的平方,则此三角形是直角三角形9、D【分析】直接利用二次根式的混合运算法则计算,进而估算计算的结果的取值范围,问题得解【详解】解:原式,故选:D【点睛】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·本题主要考查了估算无理数的大小以及二次根式的混合运算,解题的关键是正确得出的取值范围10、D【分析】利用两点之间的距离公式即可得【详解】解:点到坐标原点的距离是,故选:D【点睛】本题考查了两点之间的距离公式,熟练掌握两点之间的距离公式是解题关键二、填空题1、3cm【分析】由勾股定理求得AB=10cm,然后由翻折的性质求得BE=4cm,设DC=xcm,则BD=(8-x)cm,DE=xcm,在BDE中,利用勾股定理列方程求解即可【详解】解:在RtABC中,两直角边AC=6cm,BC=8cm, 由折叠的性质可知:DC=DE,AC=AE=6cm,DEA=C=90°,BE=AB-AE=10-6=4(cm ),DEB=90°,设DC=xcm,则BD=(8-x)cm,DE=xcm,在RtBED中,由勾股定理得:BE2+DE2=BD2,即42+x2=(8-x)2,解得:x=3故答案为3cm【点睛】本题主要考查的是翻折变换以及勾股定理的应用,一元一次方程的解法,熟练掌握翻折的性质和勾股定理是解题的关键2、【分析】根据勾股定理的逆定理,得这个三角形是直角三角形;根据直角三角形的面积计算,即可得到答案【详解】三角形的三边分别是6,8,10,又 这个三角形是直角三角形最长边上的高 最长边上的高为: 故答案为:【点睛】本题考查了勾股定理逆定理的知识;解题的关键是熟练掌握勾股定理的逆定理,从而完成求解3、【分析】直接利用和得出的变化规律,进行计算即可得出答案· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·【详解】解:根据得, ,根据得, ,原式= = = = 故答案为 .【点睛】此题主要考查了二次根式的性质与化简,正确得出数字变化规律是解题的关键.4、【分析】利用平方差公式进行有理化即可得【详解】解:因为,所以的有理化因式可以是,故答案为:【点睛】本题考查了有理化因式,熟练掌握有理化的方法是解题关键5、2【分析】连接BO证明BOD是等边三角形,即可求得BD=OD=BD=2【详解】解:如图,连接BOAOB=BOA=60°,BOD=60°,OB=OB=OD,BOD是等边三角形,BD=OD=BD=2,故答案为:2【点睛】本题考查了折叠变换的性质、平行四边形的性质以及等边三角形的判定和性质;熟练掌握翻折变换和· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·平行四边形的性质是解题的关键三、解答题1、(1)该果11月园第一周销售“忠橙”400箱,销售“爱媛”300箱(2)40【分析】(1)设该果园11月第一周销售“忠橙”箱,则销售“爱媛”箱,根据等量关系是“忠橙”售价×销量箱数+“爱媛”售价×销量箱数=50000,列方程,解方程即可;(2)根据等量关系是“忠橙”降价后售价×降价后销量箱数+“爱媛”售价×增加后销量箱数=总销售额比第一周的总销售额增加了,列方程,解方程即可(1)解:设该果园11月第一周销售“忠橙”箱,则销售“爱媛”箱,由题意得,解得,经检验是原方程的根,答:该果11月园第一周销售“忠橙”400箱,销售“爱媛”300箱(2)解:由题意得整理,得:,解得:,(不合题意,舍去),答:的值为40【点睛】本题考查列一元一次方程解销售问题应用题,列一元二次方程解应用题,掌握列一元一次方程,一元二次方程解应用题的方法与步骤,抓住等量关系“忠橙”售价×销量箱数+“爱媛”售价×销量箱数=50000列方程是解题关键2、(1)当时,方程的根为;当时,方程的根为(2)且【分析】(1)先去括号,将方程进行化简为,再分和两种情况,分别解一元一次方程、利用一元二次方程根的判别式即可得;(2)直接根据一元二次方程根的判别式大于0即可得(1)解:方程可化为,分以下两种情况:当时,方程为,解得;当时,方程为关于的一元二次方程,则由一元二次方程根的判别式得:,解得,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·此时方程为,解得,综上,当时,方程的根为;当时,方程的根为;(2)解:方程为,若方程有两个不相等的实数根,则,解得且【点睛】本题考查了一元二次方程根的判别式等知识点,熟练掌握一元二次方程根的判别式是解题关键3、(1)见解析;见解析;(2)90°;【分析】(1)根据等边对等角性质和平行线的性质证得即可;过点F作,垂足为H,根据全等三角形的判定证明(AAS)和,再根据全等三角形的性质即可证得结论;(2)AD,BF的交点记为O由(1)结论可求得AD,利用勾股定理在逆定理证得ABD=90°,根据三角形的内角和定了可推导出,再根据平角定义和四边形的内角和为360°求得AFD=90°;过B作BMAD于M,根据三角形等面积法可求得BM,然后根据勾股定理求得FG,进而由求解即可【详解】(1)证明:,DC平分;证明:如图,过点F作,垂足为H,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·,又,(AAS),(LH),=;(2)如图,AD,BF的交点记为O· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·由(1)知,,,,在中,又,又,又,;过B作BMAD于M,ABD=90°,AB=4,BD=BC=3,AD=5, ,ADBC,BCD边BC上的高为,AFD=90°,FGAE,DG=1,AD=4+1=5,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·解得:,FG=2,四边形ABCF的面积为=【点睛】本题考查等腰三角形的性质、平行线的性质、角平分线的定义、全等三角形的判定与性质、勾股定理及其逆定理、三角形的内角和定理、四边形的内角和、三角形的面积公式、等角的余角相等、解方程等知识,涉及知识点较多,综合性强,难度较难,解答的关键是熟练掌握相关知识的联系和运用4、(1)见解析(2)y=x2-3x+18(0x6)(3)【分析】(1)如图1中,作CMFG交AD于M,CM交DE于点K只要证明四边形CMGF是平行四边形,ADEDCM即可解决问题;(2)根据SDEF=S梯形EBCD-SDCF-SEFB计算即可解决问题;(3)如图3中,将ADE绕点D逆时针旋转90°得到DCM作DNGF交BC于点N,连接EN由NDENDM(SAS),推出EN=NM,由AB=6,BE=2AE,推出AE=2,BE=4,设CN=x,则BN=6-x,EN=MN=2+x,在RtENB中,根据EN2=EB2+BN2,构建方程求出x,再在RtDCN中,求出DN即可解决问题(1)证明:如图1中,作CMFG交AD于M,CM交DE于点K四边形ABCD是正方形,AD=CD,ADBC,A=ADC=90°,CMFG,DEFG,四边形CMGF是平行四边形,CMDE,CM=FG,CKD=90°CDE+DCM=90°,ADE+CDE=90°,ADE=DCM,ADEDCM(ASA),CM=DE,DE=FG(2)如图2中,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·AF=DE,AD=AB,DAE=B=90°,ADEBAF(SAS),AE=BF,AB=BC,BE=CF=x,y=SDEF=S梯形EBCD-SDCF-SEFB=×(x+6)×6-×6×x-×x(6-x)=3x+18-3x+x2-3x=x2-3x+18(0x6)(3)如图3中,将ADE绕点D逆时针旋转90°得到DCM作DNGF交BC于点N,连接EN则四边形DGFN是平行四边形,EDN=GHD=45°,ADC=90°,NDC+ADE=NDC+CDM=45°,NDE=NDM,DN=DN,DE=DM,NDENDM(SAS),EN=NM,AB=6,BE=2AE,AE=2,BE=4,设CN=x,则BN=6-x,EN=MN=2+x,在RtENB中,EN2=EB2+BN2,(x+2)2=(6-x)2+42,x=3,在RtDCN中,DN=,FG=DN=【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,勾股定理,平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题5、(1)40;(2)60;(3)【分析】(1)证明COD是等边三角形,得到ODC=60°,即可得到答案;(2)利用ADC-ODC求出答案;(3)由BOCADC,推出ADC=BOC=150°,AD=OB=8,根据COD是等边三角形,得到ODC=60°,OD=,证得AOD是直角三角形,利用勾股定理求出· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(1)解:CO=CD,OCD=60°,COD是等边三角形;ODC=60°,ADC=BOC=,ADC-ODC=40°,故答案为:40;(2)ADC=BOC=,ADC-ODC=60°,故答案为:60;(3)解:当,即BOC=150°,AOD是直角三角形BOCADC,ADC=BOC=150°,AD=OB=8,又COD是等边三角形,ODC=60°,OD=,ADO=90°,即AOD是直角三角形,,故答案为:【点睛】本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明、直角三角形的判定、多边形内角和等)为载体,内容由浅入深,层层递进试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力