2021-2022学年最新北师大版八年级数学下册第六章平行四边形专项测评试卷(无超纲带解析).docx
-
资源ID:28169240
资源大小:426.67KB
全文页数:24页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年最新北师大版八年级数学下册第六章平行四边形专项测评试卷(无超纲带解析).docx
北师大版八年级数学下册第六章平行四边形专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平行四边形中,于点,把以点为中心顺时针旋转一定角度后,得到,已知点在上,连接若,则的大小为( )A140°B155°C145°D135°2、如果一个多边形的每个内角都是144°,那么这个多边形的边数是()A5B6C10D123、如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则1+2()A90°B180°C270°D360°4、一个多边形的内角和是它的外角和的两倍,则从这个多边形的一个顶点出发共有()条对角线A6条B4条C3条D2条5、若一个多边形的每一个内角均为120°,则下列说法错误的是( )A这个多边形的内角和为720°B这个多边形的边数为6C这个多边形是正多边形D这个多边形的外角和为360°6、一个多边形的内角和是外角和的5倍,则这个多边形是()A12B11C10D97、如图,一只蚂蚁从点A出发沿直线前进5m,到达点B后,向左转角度,再沿直线前进5m,到达点C后,又向左转角度,照这样爬下去,第一次回到出发点,蚂蚁共爬了60m,则每次向左转的度数为( )A30B36C40D608、如图,正五边形ABCDE点D、E分别在直线m、n上若mn,120°,则2为( )A52°B60°C58°D56°9、如图,四边形ABCD中,A=60°,AD=2,AB=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为( )ABCD10、如图,四边形ABCD中,ADBC,点P是对角线BD的中点,E、F分别是AB、CD的中点,若EPF130°,则PEF的度数为()A25°B30°C35°D50°第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,是三角形ABC的不同三个外角,则_2、已知:ABC中,点D、E、F分别是ABC三边的中点,如果ABC的周长是12cm,面积是16 cm2,那么DEF的周长是_3、如图所示,在Rt中,CM是斜边AB上的中线,E、F分别为MB、BC的中点,若,则的面积为_4、如图,四边形ABCD中,C58°,BD90°,E、F分别是BC、DC上的点,当AEF的周长最小时,EAF的度数为_5、如图,在平行四边形ABCD中,B45°,AD8,E、H分别为边AB、CD上一点,将ABCD沿EH翻折,使得AD的对应线段FG经过点C,若FGCD,CG4,则EF的长度为 _三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,点A(3,1),B(1,1),C(0,3)(1)将ABC绕点O顺时针旋转90°,点A,B,C的对应点A1,B1,C1均落在格点上,画出旋转后的A1B1C1,并直接写出点A1,B1,C1的坐标;(2)将ABC绕点A旋转后,B,C对应点B2,C2均落在格点上,画出旋转后的AB2C2,并直接写出点B2,C2的坐标;(3)若线段B1C1绕某点旋转后恰好与线段B2C2重合,直接写该点的坐标为 2、如图,在四边形中,求四边形的面积3、如图,在RtOAB中,OAB90°,OAAB6,将OAB绕点O沿逆时针方向旋转90°得到OA1B1(1)线段OA1的长是 ,AOB1的度数是 ;(2)连接AA1,求证:四边形OAA1B1是平行四边形4、如果一个多边形的各边都相等且各角也都相等,那么这样的多边形叫做正多边形,如下图所示就是一组正多边形(1)观察上面每个正多边形中的a,填写下表:正多边形边数456.na的度数 . (2)是否存在正n边形使得a12°?若存在,请求出n的值;若不存在,请说明理由5、如图,在中,对角线AC、BD交于点O,AB=10,AD=8,ACBC,求(1)的面积;(2)AOD的周长-参考答案-一、单选题1、C【分析】根据题意求出ADF,根据平行四边形的性质求出ABC、BAE,根据旋转变换的性质、结合图形计算即可【详解】解:ADC=70°,CDF=15°,ADF=55°,四边形ABCD是平行四边形,ABC=ADC=70°,ADBC,BFD=125°,AEBC,BAE=20°,由旋转变换的性质可知,BFG=BAE=20°,DFG=DFB+BFG=145°,故选:C【点睛】本题考查的是平行四边形的性质、旋转变换的性质,掌握旋转前、后的图形全等是解题的关键2、C【分析】根据多边形的内角求出多边形的一个外角,然后根据多边形外角和等于,计算即可【详解】解:一个多边形的每个内角都是144°,这个多边形的每个外角都是(180°144°)36°,这个多边形的边数360°÷36°10故选:C【点睛】本题考查了多边形的外角和,熟知多边形外角和等于是解本题的关键3、C【分析】首先根据三角形内角和定理算出的度数,再根据四边形内角和为,计算出的度数【详解】解:,故选:C【点睛】本题主要考查了三角形内角和定理,多边形内角和定理,解题的关键是利用三角形的内角和,四边形的内角和4、C【分析】先由多边形的内角和公式与外角和的关系可得再解方程,从而可得答案.【详解】解:设这个多边形为边形,则 解得: 所以从这个多边形的一个顶点出发共有条对角线,故选C【点睛】本题考查的是多边形的内角和定理与外角和定理,多边形的对角线问题,掌握“利用多边形的内角和为 外角和为”是解题的关键.5、C【分析】先根据多边形的外角和求出这个多边形的边数,再根据多边形的内角和、正多边形的定义即可得【详解】解:多边形的每一个内角均为,这个多边形的每一个外角均为,这个多边形的边数为,则选项B说法正确;这个多边形的内角和为,则选项A说法正确;多边形的外角和为,选项D说法正确;各边相等,各内角也相等的多边形叫做正多边形,选项C说法错误;故选:C【点睛】本题考查了多边形的内角和与外角和、正多边形的定义,熟练掌握多边形的内角和与外角和是解题关键6、A【分析】设这个多边形的边数为n,依据多边形的内角和是它的外角和的5倍列方程,即可得到n的值【详解】解:设这个多边形的边数为n,依题意得(n-2)180°=5×360°,解得n=12,这个多边形是十二边形,故选:A【点睛】本题主要考查了多边形的内角和与外角和,解题时注意:多边形的外角和等于360°7、A【分析】蚂蚁第一次回到出发点,爬行路线是一个多边形,是这个多边形的外角,根据正多边形的外角和定理即可得出答案【详解】解:蚂蚁爬行路线是一个多边形,边数是,由于每个外角都相等,所以 ,故选:A【点睛】本题主要考查正多边形外角和定理,解题关键是要牢记多边形的外角和为360°8、D【分析】延长AB交直线n于点F,由正五边形ABCDE,可得出五边形每个内角的度数,再由三角形外角的性质可得,根据平行线的性质可得,最后再利用一次三角形外角的性质即可得【详解】解:如图所示,延长AB交直线n于点F,正五边形ABCDE,故选:D【点睛】题目主要考查正多边形的内角,平行线的性质,三角形外角的性质等,理解题意,作出辅助线,综合运用这几个性质是解题关键9、A【分析】根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN,从而求得EF的最大值 连接DB,过点D作DHAB交AB于点H,再利用直角三角形的性质和勾股定理求解即可;【详解】解:ED=EM,MF=FN, EF=DN, DN最大时,EF最大, N与B重合时DN=DB最大,在RtADH中, A=60° AH=2×=1,DH=,BH=ABAH=31=2, DB=, EFmax=DB=, EF的最大值为故选A【点睛】本题考查了三角形的中位线定理,勾股定理,含30度角的直角三角形的性质,利用中位线求得EF=DN是解题的关键10、A【分析】根据三角形的中位线定理,可得 ,从而PE=PF,则有PEF=PFE,再根据三角形的内角和定理,即可求解【详解】解:点P是对角线BD的中点,E、F分别是AB、CD的中点, ,ADBC,PE=PF,PEF=PFE,EPF130°, 故选:A【点睛】本题主要考查了三角形的中位线定理,等腰三角形的性质,三角形的内角和定理,熟练掌握三角形的中位线定理是解题的关键二、填空题1、360°【分析】利用三角形的外角和定理解答【详解】解:是三角形ABC的不同三个外角,三角形的外角和为360°,1+2+3=360°,故答案为:360°【点睛】本题主要考查了三角形的外角和定理,三角形的外角的性质,属于中考常考题型2、6cm【分析】根据三角形的中位线定理,ABC的各边长等于DEF的各边长的2倍,从而得出DEF的周长【详解】解:点D、E、F分别是ABC三边的中点,AB=2EF,AC=2DE,BC=2DF,=12cm,AB+AC+BC=2(DE+EF+DF)=12cmcm故答案是:6cm【点睛】本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理解题是关键3、3【分析】根据三角形中位线定理求出CM,根据直角三角形的性质求出AB根据勾股定理得出BC,求出,由中线的性质得,再根据中位线的性质可得结论【详解】解:E、F分别为MB、BC的中点,CM=2EF=5,ACB=90°,CM是斜边AB上的中线,AB=2CM=10,ACB=90°, CM是斜边AB上的中线,EF是的中位线, 故答案为:3【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键4、64°【分析】根据要使AEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A,A,即可得出AAE+AHAA58°,进而得出AEF+AFE2(AAE+A),即可得出答案【详解】解:作A关于BC和CD的对称点A,A,连接AA,交BC于E,交CD于F,则AA即为AEF的周长最小值作DA延长线AH,C58°,ABCADC90°,DAB360°-ABCADC -C=122°,HAA58°,AAE+AHAA58°,EAAEAA,FADA,EAA+AAF58°,AEF=FAD+A,AFE=EAA+EAA,AEF+AFE +AFE2(AAE+A)=116°EAF180°-AEF-AFE=64°,故答案为:64°【点睛】本题考查平面内最短路线问题求法、三角形的外角的性质和垂直平分线的性质,根据已知得出E,F的位置是解题关键5、【分析】延长CF与AB交于点M,由平行四边形的性质得BC长度,GMAB,由折叠性质得GF,EFM,进而得FM,再根据EFM是等腰直角三角形,便可求得结果【详解】解:延长CF与AB交于点M,FGCD,ABCD,CMAB,B=45°,BC=AD=8,CM=4,由折叠知GF=AD=8,CG=4,MF=CM-CF=CM-(GF-CG)=4-4,EFC=A=180°-B=135°,MFE=45°,EF=MF=(4-4)=8-4故答案为:8-4【点睛】本题主要考查了平行四边形的性质,折叠的性质,解直角三角形的应用,关键是作辅助线构造直角三角形三、解答题1、(1)图见解析,A1(-1,3),B1(1,-1),C1(3,0);(2)图见解析,B2(-1,-5),C2(1,-4);(3)D(1,)【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可解决问题;(2)分别作出A,B,C的对应点A2,B2,C2即可解决问题;(3)画出图形,根据中点坐标计算写出即可【详解】(1)如图A1B1C1就是ABC绕点O顺时针旋转90°后的图形,A1(-1,3),B1(1,-1),C1(3,0);(2)如图:将ABC绕点A顺时针旋转90°后,由于B,C的对应点B2,C2均落在格点上,则AB2C2,是符合要求旋转后的图形, B2(-1,-5),C2(1,-4);(3)当线段B1C1绕点D(1,)旋转时,则B1C1与B2C2重合,如图,连接,可得,四边形为平行四边形,连接交于点D,点D为的中点,【点睛】本题考查旋转变换,平行四边形的判定与性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型2、18【分析】延长CB至点E,使得BE=DC,然后由题意易证ADCABE,则有DAC=BAE,AC=AE,进而可得CAE=90°,最后问题可求解【详解】解:延长CB至点E,使得BE=DC,如图所示:,ADCABE,DAC=BAE,AC=AE,即,ACE是等腰直角三角形,【点睛】本题主要考查全等三角形的性质与判定、等腰直角三角形的判定及多边形内角和,熟练掌握全等三角形的性质与判定、等腰直角三角形的判定及多边形内角和是解题的关键3、(1)6,135°;(2)见详解【分析】(1)根据OAAB6,OAB90°得到AOB45°,根据旋转的性质得到OA1=OA=6,BO B1AO A190°,即可求出AO B1135°; (2)由旋转的性质得到AO A190°,OA1A1 B1OA6,进而得到AO A1O A1B1,OAA1B1,从而得证四边形OA A1B1是平行四边形【详解】解:(1)OAAB6,OAB90°,AOB45°,OAB绕点O沿逆时针方向旋转90°得到OA1B1,OA1=OA=6,BOB1AOA190°,AOB1AOB+BOB145°+90°135°,故答案为:6,135°(2)证明:OAB绕点O沿逆时针方向旋转90°得到OA1B1,AOA190°,OA1B190°,OA1A1 B1OA6,AO A1O A1B1,OAA1B1,A1B1OA,四边形OAA1B1是平行四边形【点睛】本题考查了等腰直角三角形的性质、旋转的性质、平行四边形的判定定理,灵活应用旋转的性质得到相关的线段长度与角度大小是解题的关键4、(1);(2)存在,15【分析】(1)根据正多边形的外角和,求得内角的度数,根据等腰三角形性质和三角形内角和定理即可求得的度数;(2)根据(1)的结论,将代入求得的值即可【详解】解:(1)正多边形的每一个外角都相等,且等于则正多边形的每个内角为,根据题意,正多边形的每一条边都相等,则所在的等腰三角形的顶角为:,另一个底角为,当时,当时,当时,故答案为:(2)存在设存在正n边形使得,解得【点睛】本题考查了正多边形的外角和与内角的关系,等腰三角形的性质和三角形内角和定理,根据正多边形的外角与内角互补求得内角是解题的关键5、(1)48(2)【分析】(1)利用勾股定理先求出高AC,故可求解面积;(2)根据平行四边形的性质求出AO,再利用勾股定理求出OB的长,故可求解【详解】解:(1)四边形ABCD是平行四边形,且AD=8BC=AD=8ACBCACB=90°在RtABC中,由勾股定理得AC2=AB2-BC2(2)四边形ABCD是平行四边形,且AC=6ACB=90°,BC=8,【点睛】此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质及勾股定理的应用