2021-2022学年北师大版八年级数学下册第六章平行四边形单元测试试卷(无超纲).docx
-
资源ID:28169752
资源大小:321.82KB
全文页数:21页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年北师大版八年级数学下册第六章平行四边形单元测试试卷(无超纲).docx
北师大版八年级数学下册第六章平行四边形单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个多边形每个外角都等于36°,则这个多边形是几边形( )A7B8C9D102、一个多边形的内角和是它的外角和的两倍,则从这个多边形的一个顶点出发共有()条对角线A6条B4条C3条D2条3、如图,正五边形ABCDE点D、E分别在直线m、n上若mn,120°,则2为( )A52°B60°C58°D56°4、下列A:B:C:D的值中,能判定四边形ABCD是平行四边形的是( )A1:2:3:4B1:4:2:3C1:2:2:1D3:2:3:25、如图,平行四边形ABCD的周长为16,AC、BD相交于点O,OEAC交AD于E,则DCE的周长为( )A4B6C8D106、的周长为32cm,AB:BC=3:5,则AB、BC的长分别为( )A20cm,12cmB10cm,6cmC6cm,10cmD12cm,20cm7、一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为( )A14或15或16B15或16或17C15或16D16或178、正多边形的一个内角等于144°,则该多边形是( )A正八边形B正九边形C正十边形D正十一边形9、如图,AD是ABC的角平分线,DEAB,DFAC,垂足分别为E,F,连接EF,EF与AD相交于点G,则下列关系正确的是( )AB且CD10、如图,将三角形纸片ABC沿DE折叠,当点A落在四边形BCED的外部时,测量得170°,2132°,则A为()A40°B22°C30°D52°第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在RtABC中,ACB=90°,AB=5,BC=3,将ABC绕点B顺时针旋转得到AB C,其中点A,C的对应点分别为点连接,直线交于点D,点E为AC的中点,连接DE则DE的最小值为_2、如图,是第四套人民币1角硬币,该硬币边缘镌刻的正多边形的外角的度数为_°3、如果一个多边形的内角和为1260°,那么从这个多边形的一个顶点可以连_条对角线4、如图,平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3),则顶点D的位置用数对表示为 _5、七边形内角和的度数是_三、解答题(5小题,每小题10分,共计50分)1、若一个多边形的内角和与外角的和是1440°,求这个多边形的边数2、如图1,在RtABC中,BAC90°,AB4,以AB为边在AB上方作等边ABD,以BC为边在BC右侧作等边CBE,连结DE(1)当AC5时,求BE的长(2)求证:BDDE(3)如图2,点C与点C关于直线AD对称,连结CE求CE的长连结CD,当CDE是以CE为腰的等腰三角形时,写出所有满足条件的AC长: (直接写出答案)3、一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是多少?4、如图,在ABC中,点A(3,1),B(1,1),C(0,3)(1)将ABC绕点O顺时针旋转90°,点A,B,C的对应点A1,B1,C1均落在格点上,画出旋转后的A1B1C1,并直接写出点A1,B1,C1的坐标;(2)将ABC绕点A旋转后,B,C对应点B2,C2均落在格点上,画出旋转后的AB2C2,并直接写出点B2,C2的坐标;(3)若线段B1C1绕某点旋转后恰好与线段B2C2重合,直接写该点的坐标为 5、如图,已知ABC中,D是AB上一点,ADAC,AECD,垂足是E,F是BC的中点,求证:BD2EF-参考答案-一、单选题1、D【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数【详解】解:360°÷36°=10,这个多边形的边数是10故选D【点睛】本题考查了多边形内角与外角,外角和的大小与多边形的边数无关,熟练掌握多边形内角与外角是解题关键2、C【分析】先由多边形的内角和公式与外角和的关系可得再解方程,从而可得答案.【详解】解:设这个多边形为边形,则 解得: 所以从这个多边形的一个顶点出发共有条对角线,故选C【点睛】本题考查的是多边形的内角和定理与外角和定理,多边形的对角线问题,掌握“利用多边形的内角和为 外角和为”是解题的关键.3、D【分析】延长AB交直线n于点F,由正五边形ABCDE,可得出五边形每个内角的度数,再由三角形外角的性质可得,根据平行线的性质可得,最后再利用一次三角形外角的性质即可得【详解】解:如图所示,延长AB交直线n于点F,正五边形ABCDE,故选:D【点睛】题目主要考查正多边形的内角,平行线的性质,三角形外角的性质等,理解题意,作出辅助线,综合运用这几个性质是解题关键4、D【分析】两组对角分别相等的四边形是平行四边形,所以A和C是对角,B和D是对角,对角的份数应相等【详解】解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有D符合条件故选:D【点睛】本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法5、C【分析】先证明AEEC,再求解AD+DC8,再利用三角形的周长公式进行计算即可.【详解】解:平行四边形ABCD,ADBC,ABCD,OAOC,EOAC,AEEC,AB+BC+CD+AD16,AD+DC8,DCE的周长是:CD+DE+CEAE+DE+CDAD+CD8,故选:C【点睛】本题考查的是平行四边形性质,线段垂直平分线的性质,证明AEEC是解本题关键.6、C【分析】根据平行四边形的性质,可得AB=CD,BC=AD,然后设 ,可得到 ,即可求解【详解】解:四边形ABCD是平行四边形,AB=CD,BC=AD,AB:BC=3:5,可设 ,的周长为32cm, ,即 ,解得: , 故选:C【点睛】本题主要考查了平行四边形的性质,熟练掌握平行四边形的对边相等是解题的关键7、A【分析】由题意先根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论即可【详解】解:设新多边形的边数为n,则(n-2)180°=2340°,解得:n=15,若截去一个角后边数增加1,则原多边形边数为14,若截去一个角后边数不变,则原多边形边数为15,若截去一个角后边数减少1,则原多边形边数为16,所以多边形的边数可以为14,15或16故选:A【点睛】本题考查多边形内角与外角,熟练掌握多边形的内角和公式(n-2)180°(n为边数)是解题的关键8、C【分析】根据多边形内角与外角互补,先求出一个外角,正多边形的外角和等于360°,又可表示成36°n,列方程可求解:【详解】解: 设所求正多边形边数为n,正多边形的一个内角等于144°,正多边形的一个外角=180°-144°=36°,则36°n=360°,解得n=10故选:C【点睛】本题考查正多边形内角与外角关系,正多边形外角和问题,简单一元一次方程,掌握正多边形内角与外角关系,正多边形外角和问题,简单一元一次方程,利用外角和列方程是解题关键9、B【分析】证明ADEADF(HL),利用全等三角形的性质以及线段的垂直平分线的判定一一判断即可【详解】解:AD平分BAC,BAD=CAD,DEAB,DFAC,DE= DF,在ADE和ADF中,ADEADF(HL),AE= AF,AD是线段EF的垂直平分线,ADEF且EG=FG,故选项B正确;DEAB,DFAC,AED=AFD=90°,BAC+EDF=360°-AED-AFD =180°,BAC不一定等于90°,EDF也不一定等于90°,故选项C错误;EDF90°,而AFD=90°,EDF+AFD180°,DE与AC不一定平行,故选项D错误;AED=90°,DE与AE不一定相等,AG与DG也不一定相等,故选项A错误;故选:B【点睛】本题考查了全等三角形的判定和性质,线段垂直平分线的判定和性质,四边形内角和定理,熟记各图形的性质并准确识图是解题的关键10、B【分析】利用四边形的内角和定理求出,再利用三角形的内角和定理可得结果【详解】,故选:B【点睛】本题主要考查了多边形的内角和定理及三角形的内角和定理,关键是运用多边形的内角和定理求出的度数二、填空题1、1【分析】过点A作交CD延长线于P,连接,证明,得到,从而得到DE为的中位线,则,要使得DE最小,则要最小,故当、B、C三点共线时的值最小,由此求解即可【详解】解:如图所示,过点A作交CD延长线于P,连接,由旋转的性质得:,在和中,D为的中点,又E为BC的中点,DE为的中位线,要使得DE最小,则要最小,当、B、C三点共线时的值最小,故答案为:1【点睛】本题主要考查了旋转的性质,全等三角形的性质与判定,三角形中位线定理,平行线的性质,解题的关键在于能够做出辅助线构造全等三角形2、40°【分析】先判断是正多边形的边数,再根据正多边形的性质外角都相等,利用外角和÷边数求解即可【详解】解:硬币边缘镌刻的正多边形是正九边形,外角和360°,该硬币边缘镌刻的正多边形的外角的度数为360°÷9=40°,故答案为:40【点睛】本题考查正多边形的外角,掌握正多边形的识别,多边形外角和,正多边形外角性质是解题关键3、6【分析】首先根据多边形内角和公式可得多边形的边数,再计算出对角线的条数【详解】解:设此多边形的边数为n,由题意得:(n-2)×180=1260,解得;n=9,从这个多边形的一个顶点出发所画的对角线条数:9-3=6,故答案为:6【点睛】此题主要考查了多边形的内角和计算公式求多边形的边数,关键是掌握多边形的内角和公式180(n-2)4、(8,6)【分析】根据平行四边形的性质:对边平行且相等,得出点的平移方式,解答即可【详解】解:平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3),由A,B坐标可得B向右平移3个单位,向上平移3个单位,可以得到点A点D可由点C向右平移3个单位,向上平移3个单位得到,点C坐标为(5,3)则点D坐标为(8,6);故答案为:(8,6)【点睛】此题考查了坐标与图形,涉及了平行四边形的性质以及点的平移,掌握平行四边形的性质以及点的平移规律是解题的关键5、900°900度【分析】根据多边形内角和公式计算即可【详解】解:七边形内角和的度数是,故答案为:900°【点睛】本题考查了多边形内角和公式,解题关键是熟记n边形内角和公式:三、解答题1、这个多边形的边数为8【分析】设这个多边形的边数为n,根据多边形内角和及外角和可进行求解【详解】解:设这个多边形的边数为n,由题意得:,解得:,这个多边形的边数为8【点睛】本题主要考查多边形内角和与外角和,熟练掌握多边形的内角和与外角和是解题的关键2、(1);(2)见解析;(3)4;4或【分析】(1)证明BACBDE(SAS),利用全等三角形的性质求解即可;(2)证明BACBDE(SAS),利用全等三角形的性质可得BACBDE90°,即可得出结论;(3)连接AC,由(2)知BACBDE(SAS),可得ACDE,BACBDE90°,则ADE60°+90°150°,求出CADBACBAD90°60°30°,根据对称的性质得DACDAC30°,ACDEAC,得出ADE+DAC180°,可得DEAC,可得四边形ACED是平行四边形,即可得CEADAB4;分两种情况:CEDE时,CECD时,根据等腰三角形的性质即可求解【详解】解:(1)ABD,CBE都是等边三角形,ABDCBE60°,ABDB,BCBE,ABC+CBDDBE+CBD,ABCDBE,BACBDE(SAS),BACBDE90°,BEBC在RtABC中,AB4,AC5,;(2)证明:ABD,CBE都是等边三角形,ABDCBE60°,ABDB,BCBE,ABC+CBDDBE+CBD,ABCDBE,BACBDE(SAS),BACBDE90°,BDDE;(3)连接AC,由(2)知BACBDE(SAS),ACDE,BACBDE90°,ADE60°+90°150°,CADBACBAD90°60°30°,由对称的性质得DACDAC30°,ACDEAC,ADE+DAC180°,DEAC,四边形ACED是平行四边形,CEADAB4;分两种情况:CEDE时,CE4,四边形ACED是平行四边形,CEDEAC4,由对称的性质得ACAC4,CECD时,作CFDE于F,CECD,CFDE,DFEF,CFE90°,四边形ACED是平行四边形,CEFDAC30°,综上,AC长为4或故答案为:4或【点睛】本题属于几何变换综合题,考查了等边三角形的性质,对称的性质,全等三角形的判定和性质,等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,注意分类讨论思想的运用3、这个多边形的边数为7【分析】设这个多边形的边数为n,根据多边形的内角和公式(n-2)180°与外角和定理列出方程,求解即可【详解】解:设这个多边形的边数为n,根据题意,得(n-2)×180°=3×360°-180°,解得n=7答:这个多边形的边数为7【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关4、(1)图见解析,A1(-1,3),B1(1,-1),C1(3,0);(2)图见解析,B2(-1,-5),C2(1,-4);(3)D(1,)【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可解决问题;(2)分别作出A,B,C的对应点A2,B2,C2即可解决问题;(3)画出图形,根据中点坐标计算写出即可【详解】(1)如图A1B1C1就是ABC绕点O顺时针旋转90°后的图形,A1(-1,3),B1(1,-1),C1(3,0);(2)如图:将ABC绕点A顺时针旋转90°后,由于B,C的对应点B2,C2均落在格点上,则AB2C2,是符合要求旋转后的图形, B2(-1,-5),C2(1,-4);(3)当线段B1C1绕点D(1,)旋转时,则B1C1与B2C2重合,如图,连接,可得,四边形为平行四边形,连接交于点D,点D为的中点,【点睛】本题考查旋转变换,平行四边形的判定与性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型5、见解析【分析】先证明 再证明EF是CDB的中位线,从而可得结论.【详解】证明:ADAC,AECDCEEDF是BC的中点EF是CDB的中位线BD2EF【点睛】本题考查的是等腰三角形的性质,三角形的中位线的性质,掌握“三角形的中位线平行于第三边且等于第三边的一半”是解题的关键.