2021-2022学年最新2022年沪科版九年级数学下册期末模拟试题-卷(Ⅰ)(含答案详解).docx
-
资源ID:28170072
资源大小:449.12KB
全文页数:25页
- 资源格式: DOCX
下载积分:9金币
快捷下载

会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年最新2022年沪科版九年级数学下册期末模拟试题-卷(Ⅰ)(含答案详解).docx
· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·2022年沪科版九年级数学下册期末模拟试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列语句判断正确的是()A等边三角形是轴对称图形,但不是中心对称图形B等边三角形既是轴对称图形,又是中心对称图形C等边三角形是中心对称图形,但不是轴对称图形D等边三角形既不是轴对称图形,也不是中心对称图形2、抛一枚质地均匀的硬币三次,其中“至少有两次正面朝上”的概率是()ABCD3、在一个不透明的盒子中装有12个白球,4个黄球,这些球除颜色外都相同若从中随机摸出一个球,则摸出的一个球是黄球的概率为( )ABCD4、的边经过圆心,与圆相切于点,若,则的大小等于( )ABCD5、如图,与的两边分别相切,其中OA边与相切于点P若,则OC的长为( )A8BCD6、在中,cm,cm以C为圆心,r为半径的与直线AB相切则r的取值正确的是( )A2cmB2.4cmC3cmD3.5cm7、下列事件是确定事件的是( )A方程有实数根B买一张体育彩票中大奖C抛掷一枚硬币正面朝上D上海明天下雨8、在平面直角坐标系中,已知点与点关于原点对称,则的值为( )A4B-4C-2D29、如图,从O外一点P引圆的两条切线PA,PB,切点分别是A,B,若APB60°,PA5,则弦AB的长是()· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·ABC5D510、下列图形中,是中心对称图形,但不是轴对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、把一副普通扑克牌中的13张黑桃牌洗匀后正面朝下放在桌子上,从中随机抽取一张,则抽出的牌上的数小于5的概率为 _2、点(2,-3)关于原点的对称点的坐标为_3、如图,正方形ABCD是边长为2,点E、F是AD边上的两个动点,且AE=DF,连接BE、CF,BE与对角线AC交于点G,连接DG交CF于点H,连接BH,则BH的最小值为_4、某农科所为了深入践行“绿水青山就是金山银山”的理念,大力开展对植物生长的研究,该农科所在相同条件下做某植物种子发芽率的试验,得到的结果如下表所示:种子个数1002003004005006007008009001000发芽种子个数94188281349435531625719812902发芽种子频率(结果保留两位小数)0.940.940.940.870.870.890.890.900.900.90根据频率的稳定性,估计这种植物种子不发芽的概率是_5、若扇形的圆心角为60°,半径为2,则该扇形的弧长是_(结果保留)三、解答题(5小题,每小题10分,共计50分)1、某省高考采用“3+1+2”模式:“3”是指语文、数学、英语3科为必选科目,“1”是指在物理、历史2科中任选1科,“2”是指在思想政治、化学、生物、地理4科中任选2科(1)假定在“1”中选择历史,在“2”中已选择地理,则选择生物的概率是_;(2)求同时选择物理、化学、生物的概率2、如图,在中,AB是直径,弦EFAB(1)请仅用无刻度的直尺画出劣弧EF的中点P;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接OP交EF于点Q,求PQ的长度3、如图,在中,将绕着点A顺时针旋转得到,连接BD,连接CE并延长交BD于点F(1)求的度数;· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(2)若,且,求DF的长4、在中,过点A作BC的垂线AD,垂足为D,E为线段DC上一动点(不与点C重合),连接AE,以点A为中心,将线段AE逆时针旋转90°得到线段AF,连接BF,与直线AD交于点G(1)如图,当点E在线段CD上时,依题意补全图形,并直接写出BC与CF的位置关系;求证:点G为BF的中点(2)直接写出AE,BE,AG之间的数量关系5、根据要求回答以下视图问题:(1)如图,它是由5个小正方体摆成的一个几何体,将正方体移走后,新几何体与原几何体相比, 视图没有发生变化;(2)如图,请你在网格纸中画出该几何体的主视图(请用斜线阴影表示);(3)如图,它是由几个小正方体组成的几何体的俯视图,小正方形上的数字表示该位置上的正方体的个数,请在网格纸中画出该几何体的左视图(请用斜线阴影表示)-参考答案-一、单选题1、A· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·【分析】根据等边三角形的对称性判断即可【详解】等边三角形是轴对称图形,但不是中心对称图形,B,C,D都不符合题意;故选:A【点睛】本题考查了等边三角形的对称性,熟练掌握等边三角形的对称性是解题的关键2、B【分析】根据随机掷一枚质地均匀的硬币三次,可以分别假设出三次情况,画出树状图即可【详解】解:随机掷一枚质地均匀的硬币三次,根据树状图可知至少有两次正面朝上的事件次数为:4,总的情况为8次,故至少有两次正面朝上的事件概率是:故选:B【点睛】本题主要考查了树状图法求概率,解题的关键是根据题意画出树状图3、C【分析】根据概率的求法,找准两点:全部等可能情况的总数;符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:一个不透明的盒子中装有12个白球,4个黄球,从中随机摸出一个球,所有等可能的情况16种,其中摸出的一个球是黄球的情况有4种,随机抽取一个球是黄球的概率是故选C【点睛】本题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比得到所有符合条件的情况数是解决本题的关键4、A【分析】连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案【详解】解:连接, ,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·,与圆相切于点,故选:A【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键5、C【分析】如图所示,连接CP,由切线的性质和切线长定理得到CPO=90°,COP=45°,由此推出CP=OP=4,再根据勾股定理求解即可【详解】解:如图所示,连接CP,OA,OB都是圆C的切线,AOB=90°,P为切点,CPO=90°,COP=45°,PCO=COP=45°,CP=OP=4,故选C【点睛】本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键6、B【分析】如图所示,过C作CDAB,交AB于点D,在直角三角形ABC中,由AC与BC的长,利用勾股定理求出AB的长,利用面积法求出CD的长,即为所求的r【详解】解:如图所示,过C作CDAB,交AB于点D,在RtABC中,AC=3cm,BC=4cm,根据勾股定理得:AB=5(cm),SABC=BCAC=ABCD,×3×4=×10×CD,解得:CD=2.4,则r=2.4(cm)· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·故选:B【点睛】此题考查了切线的性质,勾股定理,以及三角形面积求法,熟练掌握切线的性质是解本题的关键7、A【分析】随机事件:是指在一定条件下可能发生也可能不发生的事件,根据随机事件的分类对各个选项逐个分析,即可得到答案【详解】解:方程无实数根,因此“方程有实数”是不可能事件,所以选项符合题意;B买一张体育彩票可能中大奖,有可能不中,因此是随机事件,所以选项B不符合题意;C抛掷一枚硬币,可能正面朝上,有可能反面朝上,因此是随机事件,所以选项C不符合题意;D上海明天可能下雨,有可能不下雨,因此是随机事件,所以选项D不符合题意;故选:【点睛】本题考查的是确定事件与随机事件的概念,掌握确定事件分为必然事件,不可能事件,及随机事件的概念是解题的关键8、C【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反即可得到答案【详解】解:点与点关于原点对称,故选:C【点睛】此题主要考查了原点对称点的坐标特点,解题的关键是掌握点的变化规律9、C【分析】先利用切线长定理得到PA=PB,再利用APB=60°可判断APB为等边三角形,然后根据等边三角形的性质求解【详解】解:PA,PB为O的切线,PA=PB,APB=60°,APB为等边三角形,AB=PA=5故选:C【点睛】本题考查了切线长定理以及等边三角形的判定与性质此题比较简单,注意掌握数形结合思想的应用10、B【分析】根据“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解【详解】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;B、是中心对称图形但不是轴对称图形,故符合题意;C、既不是轴对称图形也不是中心对称图形,故不符合题意;D、是轴对称图形但不是中心对称图形,故不符合题意;故选B【点睛】本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键二、填空题1、【分析】抽出的牌的点数小于5有1,2,3,4共4个,总的样本数目为13,由此可以容易知道事件抽出的牌的点数小于5的概率【详解】解:抽出的牌的点数小于5有1,2,3,4共4个,总的样本数目为13,从中任意抽取一张,抽出的牌点数小于5的概率是: 故答案为:【点睛】此题主要考查了概率的求法用到的知识点为:概率=所求情况数与总情况数之比2、 (-2,3)【分析】根据“关于原点对称的点的坐标关系,横坐标与纵坐标都互为相反数”,即可求解【详解】点(2,-3)关于原点的对称点的坐标是(-2,3) 故答案为: (-2,3)【点睛】本题主要考查点关于原点对称,解决本题的关键是要熟练掌握关于原点对称点的坐标的关系3、#【分析】延长AG交CD于M,如图1,可证ADGDGC可得GCD=DAM,再证ADMDFC可得DF=DM=AE,可证ABEADM,可得H是以AB为直径的圆上一点,取AB中点O,连接OD,OH,根据三角形的三边关系可得不等式,可解得DH长度的最小值【详解】解:延长AG交CD于M,如图1,ABCD是正方形,AD=CD=AB,BAD=ADC=90°,ADB=BDC,AD=CD,ADB=BDC,DG=DG,ADGDGC,DAM=DCF且AD=CD,ADC=ADC,ADMCDF,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·FD=DM且AE=DF,AE=DM且AB=AD,ADM=BAD=90°,ABEDAM,DAM=ABE,DAM+BAM=90°,BAM+ABE=90°,即AHB=90°,点H是以AB为直径的圆上一点如图2,取AB中点O,连接OD,OH,AB=AD=2,O是AB中点,AO=1=OH,在RtAOD中,OD=,DHOD-OH,DH-1,DH的最小值为-1,故答案为:-1【点睛】本题考查正方形的性质,全等三角形的判定和性质,勾股定理,关键是证点H是以AB为直径的圆上一点4、0.1【分析】大量重复试验下“发芽种子”的频率可以估计“发芽种子”的概率,据此求解【详解】观察表格发现随着实验次数的增多频率逐渐稳定在0.9附近,故“发芽种子”的概率估计值为0.9这种植物种子不发芽的概率是0.1故答案为:0.1【点睛】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率5、【分析】已知扇形的圆心角为,半径为2,代入弧长公式计算【详解】解:依题意,n=,r=2,扇形的弧长=故答案为:【点睛】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·本题考查了弧长公式的运用关键是熟悉公式:扇形的弧长=三、解答题1、(1)(2)【分析】(1)直接根据概率公式即可得出答案;(2)根据题意画出树状图得出所有等可能的情况数,找出符合条件的情况数,然后根据概率公式即可得出答案(1)解:在“2”中已选择了地理,从剩下的化学、生物,思想品德三科中选一科,因此选择生物的概率为故答案为:;(2)解:用树状图表示所有可能出现的结果如下:共有12种等可能的结果数,其中选中“化学”“生物”的有2种,则在“1”中选择物理的概率,同时选择物理、化学、生物的概率故答案为:【点睛】本题考查的是用列表法或树状图法求概率,解题的关键是掌握列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件用到的知识点为:概率所求情况数与总情况数之比2、(1)见解析(2)1【分析】(1)如图,连接BE,AF,BE交AF于C,作直线OC交于点P,点P即为所求(2)利用垂径定理结合勾股定理求得OQ=4,进一步计算即可求解(1)解:如图中,点P即为所求(2)解:连接OF,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·由作图知OPEF,EQ=QF=EF=3,AB=10,OF=OP=AB=5,OQ=4,PQ= OP- OQ=1,PQ的长度为1【点睛】本题考查了作图-应用与设计,垂径定理,勾股定理,解题的关键是灵活运用所学知识解决问题3、(1)45°;(2)【分析】(1)根据旋转的性质得,通过等量代换及三角形内角和得,根据四点共圆即可求得;(2)连接EB,先证明出,根据全等三角形的性质得,在中利用勾股定理,即可求得【详解】解:(1)由旋转可知:,由三角形内角和定理得,点A,D,F,E共圆(2)连接EB,又,在中,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·【点睛】本题考查了旋转的性质、三角形全等判定及性质、勾股定理、三角形内角和等,解题的关键是掌握旋转的性质4、(1)BCCF;证明见详解;见详解;(2)2AE2=4AG2+BE2证明见详解【分析】(1)如图所示,BCCF根据将线段AE逆时针旋转90°得到线段AF,得出AE=AF,EAF=90°,可证BAECAF(SAS),得出ABE=ACF=45°,可得ECF=ACB+ACF=45°+45°=90°即可;根据ADBC,BCCF可得ADCF,可证BDGBCF,可得,得出即可;(2)2AE2=4AG2+BE2,延长BA交CF延长线于H,根据等腰三角形性质可得AD平分BAC,可得BAD=CAD=,可证BAGBHF,得出HF=2AG,再证AECAFH(AAS),得出EC=FH=2AG,利用勾股定理得出,即即可【详解】解:(1)如图所示,BCCF将线段AE逆时针旋转90°得到线段AF,AE=AF,EAF=90°,EAC+CAF=90°,BAE+EAC=90°,ABC=ACB=45°,BAE=CAF,在BAE和CAF中,BAECAF(SAS),ABE=ACF=45°,ECF=ACB+ACF=45°+45°=90°,BCCF;ADBC,BCCFADCF,BDG=BCF=90°,BGD=BFC,BDGBCF,ADBC,BD=DC=,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·,BG=GF;(2)2AE2=4AG2+BE2延长BA交CF延长线于H,ADBC,AB=AC,AD平分BAC,BAD=CAD=,BG=GF,AGHF,BAG=H=45°,AGB=HFB,BAGBHF,HF=2AG,ACE=45°,ACE =H,EAC+CAF=90°,CAF+FAH=90°,EAC=FAH,在AEC和AFH中,AECAFH(AAS),EC=FH=2AG,在RtAEF中,根据勾股定理,在RtECF中,即【点睛】本题考查图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理,掌握图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理是解题关键5、(1)主(2)见解析(3)见解析【分析】(1)根据移开后的主视图和没有移开时的主视图一致即可求解;(2)根据题意画出主视图即可;(3)根据从左边起各列的小正方形数分别为2,3,1,画出左视图即可(1)将正方体移走后,新几何体与原几何体相比主视图没有变化,如图,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·故答案为:主(2)图的主视图如图,(3)图的左视图如图,【点睛】本题考查了画三视图,根据立体图形得出三视图是解题的关键