2021-2022学年基础强化沪教版七年级数学第二学期第十五章平面直角坐标系课时练习试题.docx
-
资源ID:28170087
资源大小:593.29KB
全文页数:31页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年基础强化沪教版七年级数学第二学期第十五章平面直角坐标系课时练习试题.docx
七年级数学第二学期第十五章平面直角坐标系课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为( )A(-4,3)B(4,-3)C(-3,4)D(3,-4)2、如图,在一个单位为1的方格纸上,A1A2A3,A3A4A5,A5A6A7,是斜边在x轴上,斜边长分别为2,4,6,.的等腰直角三角形若A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为()A-1008B-1010C1012D-10123、如图,在平面直角坐标系中,已知“蝴蝶”上有两点,将该“蝴蝶”经过平移后点的对应点为,则点的对应点的坐标为( )ABCD4、若点P(m,1)在第二象限内,则点Q(1m,1)在()A第四象限B第三象限C第二象限D第一象限5、平面直角坐标系中,将点A(,)沿着x的正方向向右平移()个单位后得到B点,则下列结论:B点的坐标为(,);线段AB的长为3个单位长度;线段AB所在的直线与x轴平行;点M(,)可能在线段AB上;点N(,)一定在线段AB上其中正确的结论有( )A2个B3个C4个D5个6、在平面直角坐标系中,已知点P(5,5),则点P在( )A第一象限B第二象限C第三象限D第四象限7、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是()A(2,3)或(2,3)B(2,3)C(3,2)或(3,2)D(3,2)8、如图所示,在平面直角坐标系中,点A(0,4),B(2,0),连接AB,点D为AB的中点,将点D绕着点A旋转90°得到点D的坐标为( )A(2,1)或(2,1)B(2,5)或(2,3)C(2,5)或(2,3)D(2,5)或(2,5)9、在平面直角坐标系中,点P(2,5)关于y轴对称的点的坐标为()A(2,5)B(2,5)C(2,5)D(5,2)10、在平面直角坐标系中,点关于轴的对称点的坐标是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点关于原点的对称点坐标为_2、若点关于原点的对称点是,则_3、如图,已知点A(2,0),B(0,4),C(2,4),若在所给的网格中存在一点D,使得CD与AB垂直且相等(1)直接写出点D的坐标_;(2)将直线AB绕某一点旋转一定角度,使其与线段CD重合,则这个旋转中心的坐标为_4、已知,点A(a+1,2)、B(3,b-1)两点关于x轴对称,则C(a,b)的坐标是_5、已知点P(2,3)与点Q(a,b)关于原点对称,则a+b_三、解答题(10小题,每小题5分,共计50分)1、如图,的顶点坐标分别为画出绕点顺时针旋转,得到并直接写出的面积2、已知,在10×10网格中建立如图所示的平面直角坐标系,ABC是格点三角形(三角形的顶点是网格线的交点)(1)画出ABC关于y轴对称的A1B1C1;(2)画出A1B1C1向下平移5个单位长度得到的A2B2C2;(3)若点B的坐标为(4,2),请写出点B经过两次图形变换的对应点B2的坐标3、如图,在平面直角坐标系中,ABC的顶点坐标为A(1,1),B(3,2),C(2,4)(1)在图中作出ABC向右平移4个单位,再向下平移5个单位得到的A1B1C1;(2)在图中作出A1B1C1关于y轴对称的A2B2C2;(3)经过上述平移变换和轴对称变换后,ABC内部的任意一点P(a,b)在A2B2C2内部的对应点P2的坐标为 4、如图,在平面直角坐标系中,已知点A(1,5),B(3,1)和C(4,0)(1)平移线段AB,使点A平移到点C,画出平移后所得的线段CD,并写出点D的坐标;(2)将线段AB绕点A逆时针旋转90°,画出旋转后所得的线段AE,并写出点E的坐标;(3)线段MN与线段AB关于原点成中心对称,点A的对应点为点M,画出线段MN并写出点M的坐标;直接写出线段MN与线段CD的位置关系5、在平面直角坐标系xoy中,A,B,C如图所示:请用无刻度直尺作图(仅保留作图痕迹,无需证明)(1)如图1,在BC上找一点P,使BAP45°;(2)如图2,作ABC的高BH6、如图,在平面直角坐标系中,已知点A(1,4),B(4,4),C(2,1)(1)请在图中画出ABC;(2)将ABC向左平移5个单位,再沿x轴翻折得到A1B1C1,请在图中画出A1B1C1;(3)若ABC 内有一点P(a,b),则点P经上述平移、翻折后得到的点P1的坐是 7、如图,在平面直角坐标系中,直线l是第一、三象限的角平分线实验与探究:(1)观察图,易知A(0,2)关于直线l的对称点的坐标为(2,0),请在图中分别标明B(5,3)、C(2,5)关于直线l的对称点、的位置,并写出他们的坐标: , ;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点的坐标为 (不必证明);运用与拓广:(3)已知两点D(1,3)、E(3,4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小8、如图是某地火车站及周围的简单平面图(图中每个小正方形的边长代表1千米)(1)请以火车站所在的位置为坐标原点,以图中小正方形的边长为单位长度,建立平面直角坐标系,并写出体育场A、超市B、市场C、文化宫D的坐标;(2)在(1)中所建的坐标平面内,若学校E的位置是(3,3),请在图中标出学校E的位置9、在平面直角坐标系中,ABC各顶点的坐标分别是A(2,5),B(1,2),C(4,1)(1)作ABC关于y轴对称后的ABC,并写出A,B,C的坐标;(2)在y轴上有一点P,当PBB'和ABC的面积相等时,求点P的坐标10、(1)如图所示,图中的两个三角形关于某点对称,请找出它们的对称中心O(2)如图所示,已知ABC的三个顶点的坐标分别为A(4,1),B(1,1),C(3,2)将ABC绕原点O旋转180°得到A1B1C1,请画出A1B1C1,并写出点A1的坐标-参考答案-一、单选题1、C【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答【详解】解:点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,点P的横坐标是-3,纵坐标是4,点P的坐标为(-3,4)故选C【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键2、C【分析】首先确定角码的变化规律,利用规律确定答案即可【详解】解:各三角形都是等腰直角三角形,直角顶点的纵坐标的长度为斜边的一半,A3(0,0),A7(2,0),A11(4,0),2021÷4=505余1,点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,A2021的坐标为(1012,0)故选:C【点睛】本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键3、D【分析】先根据与点对应,求出平移规律,再利用平移特征求出点B坐标即可【详解】解:与点对应,平移1-3=-2,3-7=-4,先向下平移4个单位,再向左平移2个单位,点B(7,7),点B(7-2,7-4)即如图所示 故选:D【点睛】本题考查图形与坐标,点的平移特征,掌握点的平移特征是解题关键4、A【分析】直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案【详解】点P(m,1)在第二象限内,m0,1m0,则点Q(1m,1)在第四象限故选:A【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)5、B【分析】根据平移的方式确定平移的坐标即可求得B点的坐标,进而判断,根据平移的性质即可求得的长,进而判断,根据平移的性质可得线段AB所在的直线与x轴平行,即可判断,根据纵坐标的特点即可判断【详解】解:点A(,)沿着x的正方向向右平移()个单位后得到B点,B点的坐标为(,);故正确;则线段AB的长为;故不正确;A(,),B(,);纵坐标相等,即点A,B到x轴的距离相等线段AB所在的直线与x轴平行;故正确若点M(,)在线段AB上;则,即,不存在实数故点M(,)不在线段AB上;故不正确同理点N(,)在线段AB上;故正确综上所述,正确的有,共3个故选B【点睛】本题考查了平移的性质,平面直角坐标系中点到坐标轴的距离,掌握平移的性质是解题的关键6、D【分析】根据各象限内点的坐标特征解答即可【详解】解:点P(5,-5)的横坐标大于0,纵坐标小于0,所以点P所在的象限是第四象限故选:D【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)7、A【分析】根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可【详解】解:点P在y轴左侧,点P在第二象限或第三象限,点P到x轴的距离是3,到y轴距离是2,点P的坐标是(2,3)或(2,3),故选:A【点睛】此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离8、C【分析】分顺时针和逆时针旋转90°两种情况讨论,构造全等三角形即可求解【详解】解:设点D绕着点A逆时针旋转90°得到点D1,分别过点D,D1作轴的垂线,分别交轴于点C、E,如图:根据旋转的性质得DAD1=90°,AD1=AD,AED1=ACD=90°,D1+EAD1=90°,EAD1 +DAC=90°,D1=DAC,AD1EDAC,CD=AE,ED1=AC,A(0,4),B(2,0),点D为AB的中点,点D的坐标为(1,2),CD=AE=1,ED1=AC=AO-OC=2,点D1的坐标为(2,5);设点D绕着点A顺时针旋转90°得到点D2,同理,点D2的坐标为(-2,3),综上,点D绕着点A旋转90°得到点D的坐标为(-2,3)或(2,5),故选:C【点睛】本题考查了坐标与图形的变化-旋转,全等三角形的判定和性质,根据平面直角坐标系确定出点D1和D2的位置是解题的关键9、C【分析】关于轴对称的两个点的坐标特点:横坐标互为相反数,纵坐标不变,根据原理直接可得答案.【详解】解:点P(2,5)关于y轴对称的点的坐标为: 故选:C【点睛】本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的坐标特点:横坐标互为相反数,纵坐标不变”是解本题的关键.10、B【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案【详解】解:点P(2,-1)关于x轴的对称点的坐标为(2,1),故选:B【点睛】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标的变化规律二、填空题1、(-4,7)【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P(-x,-y),进而得出答案【详解】解:点关于原点的对称点坐标为(-4,7),故答案是:(-4,7)【点睛】此题主要考查了原点对称点的性质,正确掌握横纵坐标的符号关系是解题关键2、【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案【详解】解:由关于坐标原点的对称点为,得,解得:故答案为:【点睛】本题考查了关于原点的对称的点的坐标,解题的关键是掌握关于原点对称的点的横坐标互为相反数,纵坐标互为相反数3、 或【分析】(1)观察坐标系即可得点D坐标;(2)对应点连线段的垂直平分线的交点即为旋转中心【详解】解:(1)观察图象可知,点D的坐标为(6,6),故答案为:(6,6);(2)当点A与C对应,点B与D对应时,如图:此时旋转中心P的坐标为(4,2);当点A与D对应,点B与C对应时,如图:此时旋转中心P的坐标为(1,5);故答案为:(4,2)或(1,5)【点睛】本题考查坐标与图形变化旋转,解题的关键是理解对应点连线段的垂直平分线的交点即为旋转中心4、(2,-1)【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,可得a、b的值,进而可得答案【详解】解:点A(a+1,2)、B(3,b-1)两点关于x轴对称,a+1=3,b-1=-2,解得:a=2,b=-1,C的坐标是(2,-1),故答案为:(2,-1)【点睛】本题主要考查了关于x轴对称的点的坐标,关键是掌握点的坐标变化规律5、1【分析】根据两点关于原点对称,横纵坐标分别互为相反数计算即可【详解】解:点与点关于原点对称,a=-2,b= 3,a+b=-2+3=1,故答案为:1【点睛】本题考查了坐标系中两点关于原点对称的计算,代数式的值,熟练掌握两点关于原点对称时坐标之间的关系是解题的关键三、解答题1、图见解析,面积为2【分析】先求出旋转后A1(5,2),B1(2,3),C1(4,1),然后描点,连线,利用矩形面积减三个三角形面积即可【详解】解:的顶点坐标分别为,绕点顺时针旋转,得到,点A1横坐标-1+5-(-1)=5,纵坐标-1+-1-(-4)=2,A1(5,2),点B1横坐标-1+2-(-1)=2,纵坐标-1+-1-(-5)=3,B1(2,3),点C1横坐标-1+4-(-1)=4,纵坐标-1+-1-(-3)=1,C1(4,1),在平面直角坐标系中描点A1(5,2),B1(2,3),C1(4,1),顺次连结A1B1, B1C1,C1A1,则A1B1C1为所求;,=,=,=2【点睛】本题考查三角形旋转画图,割补法求三角形面积,掌握求旋转坐标的方法,描点法画图,割补法求面积是解题关键2、(1)见解析;(2)见解析;(3)(4,3)【分析】(1)分别作出A,B,C 的对应点A1,B1,C1即可(2)分别作出点A1,B1,C1的对应点A2,B2,C2即可(3)根据所画图形,直接写出坐标即可【详解】解:(1)如图所示,A1B1C1即为所求;(2)如图所示,A2B2C2即为所求;(3)点B2的坐标为(4,3)【点睛】本题考查作图轴对称变换,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题3、(1)见解析;(2)见解析;(3)(a4,b5)【分析】(1)利用平移变换的性质分别作出A,B,C 的对应点A1,B1,C1即可;(2)利用轴对称变换的性质分别作出A1,B1,C1的对应点A2,B2,C2即可;(3)利用平移变换的性质,轴对称变换的性质解决问题即可【详解】解:(1)如图,A1B1C1即为所求;(2)如图,A2B2C2即为所求;(3)由题意得:P(a4,b5)故答案为:(a4,b5);【点睛】本题考查作图轴对称变换,平移变换的性质等知识,解题的关键是掌握轴对称的性质,平移变换的性质,属于中考常考题型4、(1)作图见解析,点D的坐标为(2,-4);(2)作图见解析,点E的坐标为(3,3);(3)作图见解析,点M的坐标为(1,-5);MNCD【分析】(1)根据点A平移到点C,即可得到平移的方向和距离,进而画出平移后所得的线段CD;(2)根据线段AB绕点A逆时针旋转90°,即可画出旋转后所得的线段AE;(3)分别作出A,B的对应点M,N,连接即可;由平行线的传递性可得答案【详解】解:(1)如图所示,线段CD即为所求,点D的坐标为(2,-4);(2)如图所示,线段AE即为所求,点E的坐标为(3,3);(3)如图所示,线段MN即为所求,点M的坐标为(1,-5);线段MN与线段AB关于原点成中心对称,MNAB,线段CD是由线段AB平移得到的,CDAB,MNCD【点睛】本题主要考查了利用平移变换和旋转变换作图,解题的关键是理解题意,灵活运用所学知识解决问题5、(1)见解析;(2)见解析【分析】(1)过点B作MQx轴,过点A作AMMQ于点M,过点N作NQMQ于点Q,连接BN,连接AN交BC于点P,则BAP=45°,先证得ABMBNQ,可得AB=BN,ABM=BNQ,从而得到ABN=90°,即可求解;(2)在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为ABC的高过点B作BGx轴于点G,过点A作ADx轴于点D,则AD=GQ=1,CD=BG=6,ADC=BGQ=90°,先证得ACDQBG,从而得到ACD=QBG,进而得到CHQ=90°,即可求解【详解】解:(1)如图,过点B作MQx轴,过点A作AMMQ于点M,过点N作NQMQ于点Q,连接BN,连接AN交BC于点P,则BAP=45°,如图所示,点P即为所求, 理由如下:根据题意得:AM=BQ=5,BM=QN=3,AMB=BQN=90°,ABMBNQ,AB=BN,ABM=BNQ,BAP=BNP,NBQ+BNQ=90°,ABM +BNQ=90°,ABN=90°,BAP=BNP=45°;(2)如图,在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为ABC的高理由如下:过点B作BGx轴于点G,过点A作ADx轴于点D,则AD=GQ=1,CD=BG=6,ADC=BGQ=90°,ACDQBG,ACD=QBG,QBG+BQG=90°,ACD +BQG=90°,CHQ=90°,BHAC,即BH为ABC的高【点睛】本题主要考查了图形与坐标,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键6、(1)见解析;(2)见解析;(3)(a5,b)【分析】(1)结合直角坐标系,可找到三点的位置,顺次连接即可得出ABC(2)将各点分别向左平移5个单位长度,再作出关于x轴的对称点,顺次连接即可得到A1B1C1;(3)根据点的坐标平移规律可得结论【详解】解:(1)如图,ABC即为所画(2)如图,A1B1C1即为所画(3)点P(a,b)向左平移5个单位后的坐标为(a5,b),关于x轴对称手点的坐标为(a5,b) 故答案为:(a5,b)【点睛】此题考查了平移作图、轴对称变换以及直角坐标系的知识,解答本题的关键是掌握平移和轴对称的特点,找到各点在直角坐标系的位置7、(1)(3,5),(5,2);(2)(b,a);(3)Q(-3,-3)【分析】(1)根据点关于直线对称的定义,作出B、C两点关于直线l的对称点B、C,写出坐标即可(2)通过观察即可得出对称结论(3)作点E关于直线l的对称点E(4,3),连接DE交直线l于Q,此时QE+QD的值最小【详解】解:(1)B(5,3)、C(2,5)关于直线l的对称点B、C的位置如图所示B(3,5),C(5,2)故答案为B(3,5),C(5,2)(2)由(1)可知点P(a,b)关于第一、三象限的角平分线l的对称点P的坐标为P(b,a)(3)作点E关于直线l的对称点E(4,3),连接DE交直线l于Q,两点之间线段最短此时QE+QD的值最小,由图象可知Q点坐标为(-3,-3)【点睛】本题考查了坐标系中的轴对称变化,点关于第一、三象限角平分线对称的点的坐标为;关于第二、四象限角平分线对称的点的坐标为.8、(1)见解析,体育场A的坐标为(4,3)、超市B的坐标为(0,4)、市场C的坐标为(4,3)、文化宫D的坐标为(2,3);(2)见解析【分析】(1)以火车站所在的位置为坐标原点,建立平面直角坐标系,即可表示出体育场A、超市B市场C、文化宫D的坐标(2)根据点的坐标的意义描出点E【详解】解:(1)平面直角坐标系如图所示,体育场A的坐标为(4,3)、超市B的坐标为(0,4)、市场C的坐标为(4,3)、文化宫D的坐标为(2,3)(2)如图,点E即为所求【点睛】本题考查了坐标确定位置,主要是对平面直角坐标系的定义和点的坐标的写法的考查,是基础题9、(1)见解析;A(2,5),B'(1,2),C'(4,1);(2)P的坐标为(0,7)或(0,3)【分析】(1)分别作出各点关于y轴的对称点,再顺次连接,并写出各点坐标即可;(2)根据三角形的面积公式,进而可得出P点坐标【详解】解:(1)如图所示:A(2,5),B'(1,2),C'(4,1);(2)ABC的面积,BB'2,P的坐标为(0,7)或(0,3)【点睛】本题考查的是作图-轴对称变换,熟知轴对称的性质是解答此题的关键10、(1)见解析;(2)画图见解析,点A1的坐标为(-4,1)【分析】(1)根据对称中心的性质可得对应点连线的交点即为对称中心;(2)根据题意作出A,B,C绕原点O旋转180°得到的点A1,B1,C1,然后顺次连接A1,B1,C1即可,根据点A1的在平面直角坐标系中的位置即可求得坐标【详解】(1)如图所示,点O即为要求作的对称中心(2)如图所示,A1B1C1即为要求作的三角形,由点A1的在平面直角坐标系中的位置可得,点A1的坐标为(-4,1)【点睛】此题考查了平面直角坐标系中的几何旋转作图,中心对称的性质,解题的关键是熟练掌握中心对称的性质