欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2021-2022学年度强化训练京改版八年级数学下册第十五章四边形达标测试试题(含详解).docx

    • 资源ID:28170637       资源大小:661.41KB        全文页数:30页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2021-2022学年度强化训练京改版八年级数学下册第十五章四边形达标测试试题(含详解).docx

    京改版八年级数学下册第十五章四边形达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平行四边形ABCD中,A30°,那么B与A的度数之比为( )A4:1B5:1C6:1D7:12、如图,把一张长方形纸片ABCD沿对角线AC折叠,点B的对应点为点B,AB与DC相交于点E,则下列结论正确的是 ( )ADABCABBACDBCD CADAEDAECE3、如图,矩形ABCD的对角线AC和BD相交于点O,若AOD120°,AC16,则AB的长为()A16B12C8D44、下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD5、勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要纽带数学家欧几里得利用如图验证了勾股定理:以直角三角形ABC的三条边为边长向外作正方形ACHI,正方形ABED,正方形BCGF,连接BI,CD,过点C作CJDE于点J,交AB于点K设正方形ACHI的面积为S1,正方形BCGF的面积为S2,长方形AKJD的面积为S3,长方形KJEB的面积为S4,下列结论:BICD;2SACDS1;S1S4S2S3;其中正确的结论有( )A1个B2个C3个D4个6、在锐角ABC中,BAC60°,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:NPMP;AN:ABAM:AC;BN2AN;当ABC60°时,MNBC,一定正确的有( )ABCD7、在RtABC中,C90°,若D为斜边AB上的中点,AB的长为10,则DC的长为( )A5B4C3D28、如图,在中,点,分别是,上的点,点,分别是,的中点,则的长为( )A4B10C6D89、如图,在长方形ABCD中,AB10cm,点E在线段AD上,且AE6cm,动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,同时点Q在线段BC上以vcm/s的速度由点B向点C运动,当EAP与PBQ全等时,v的值为()A2B4C4或D2或10、如图,菱形中,以为圆心,长为半径画,点为菱形内一点,连,若,且,则图中阴影部分的面积为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正方形ABCD的边长为做正方形,使A,B,C,D是正方形各边的中点;做正方形,使是正方形各边的中点以此类推,则正方形的边长为_ 2、如果一个多边形的内角和等于外角和的2倍,那么这个多边形的边数n=_3、如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB6cm,BC8cm,则EF_cm4、如图,在正方形ABCD中,AB2,取AD的中点E,连接EB,延长DA至F,使EFEB,以线段AF为边作正方形AFGH,点H在线段AB上,则的值是 _5、如图,正方形ABCD的面积为18,ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为 _三、解答题(5小题,每小题10分,共计50分)1、(1)如图1,在ABC中,BE平分ABC,CE平分ACD,试说明:EA;(拓展应用)(2)如图2,在四边形ABDC中,对角线AD平分BAC若ACD130°,BCD50°,CBA40°,求CDA的度数;若ABD+CBD180°,ACB82°,写出CBD与CAD之间的数量关系2、如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E,CD5,DB13,求BE的长3、如图:在中,点为的中点,点为直线上的动点(不与点,重合),连接,以为边在的上方作等边,连接(1)是_三角形;(2)如图1,当点在边上时,运用(1)中的结论证明;(3)如图2,当点在的延长线上时,(2)中的结论是否依然成立?若成立,请加以证明,若不成立,请说明理由4、ABC为等边三角形,AB4,ADBC于点D,E为线段AD上一点,AE以AE为边在直线AD右侧构造等边AEF连结CE,N为CE的中点(1)如图1,EF与AC交于点G,连结NG,求线段NG的长;连结ND,求DNG的大小(2)如图2,将AEF绕点A逆时针旋转,旋转角为M为线段EF的中点连结DN、MN当30°120°时,猜想DNM的大小是否为定值,并证明你的结论5、如图,点E为矩形ABCD外一点,AE = DE.求证:ABEDCE-参考答案-一、单选题1、B【分析】根据平行四边形的性质先求出B的度数,即可得到答案【详解】解:四边形ABCD是平行四边形,ADBC,B=180°-A=150°,B:A=5:1,故选B【点睛】本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握平行四边形邻角互补2、D【分析】根据翻折变换的性质可得BAC=CAB,根据两直线平行,内错角相等可得BAC=ACD,从而得到ACD=CAB,然后根据等角对等边可得AE=CE,从而得解【详解】解:矩形纸片ABCD沿对角线AC折叠,点B的对应点为B,BAC=CAB,ABCD,BAC=ACD,ACD=CAB,AE=CE,结论正确的是D选项故选D.【点睛】本题考查了翻折变换的性质,平行线的性质,矩形的对边互相平行,等角对等边的性质,熟记各性质并准确识图是解题的关键3、C【分析】由题意可得AOBOCODO8,可证ABO是等边三角形,可得AB8【详解】解:四边形ABCD是矩形,AC2AO2CO,BD2BO2DO,ACBD16,OAOB8,AOD120°,AOB60°,AOB是等边三角形,ABAOBO8,故选:C【点睛】本题考查了矩形的性质,等边三角形的性质和判定,熟练掌握矩形的性质是本题的关键4、C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、既是轴对称图形,又是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不符合题意故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合5、C【分析】根据SAS证ABIADC即可得证正确,过点B作BMIA,交IA的延长线于点M,根据边的关系得出SABIS1,即可得出正确,过点C作CNDA交DA的延长线于点N,证S1S3即可得证正确,利用勾股定理可得出S1+S2S3+S4,即能判断不正确【详解】解:四边形ACHI和四边形ABED都是正方形,AIAC,ABAD,IACBAD90°,IAC+CABBAD+CAB,即IABCAD,在ABI和ADC中,ABIADC(SAS),BICD,故正确;过点B作BMIA,交IA的延长线于点M,BMA90°,四边形ACHI是正方形,AIAC,IAC90°,S1AC2,CAM90°,又ACB90°,ACBCAMBMA90°,四边形AMBC是矩形,BMAC,SABIAIBMAIACAC2S1,由知ABIADC,SACDSABIS1,即2SACDS1,故正确;过点C作CNDA交DA的延长线于点N,CNA90°,四边形AKJD是矩形,KADAKJ90°,S3ADAK,NAKAKC90°,CNANAKAKC90°,四边形AKCN是矩形,CNAK,SACDADCNADAKS3,即2SACDS3,由知2SACDS1,S1S3,在RtACB中,AB2BC2+AC2,S3+S4S1+S2,又S1S3,S1+S4S2+S3, 即正确;在RtACB中,BC2+AC2AB2,S3+S4S1+S2,故错误;综上,共有3个正确的结论,故选:C【点睛】本题主要考查勾股定理,正方形的性质,矩形性质,全等三角形的判定和性质等知识,熟练掌握勾股定理和全等三角形的判定和性质是解题的关键6、C【分析】利用直角三角形斜边上的中线的性质即可判定正确;利用含30度角的直角三角形的性质即可判定正确,由勾股定理即可判定错误;由等边三角形的判定及性质、三角形中位线定理即可判定正确【详解】CM、BN分别是高CMB、BNC均是直角三角形点P是BC的中点PM、PN分别是两个直角三角形斜边BC上的中线故正确BAC=60ABN=ACM=90BAC=30AB=2AN,AC=2AMAN:AB=AM:AC=1:2即正确在RtABN中,由勾股定理得:故错误当ABC=60时,ABC是等边三角形CMAB,BNACM、N分别是AB、AC的中点MN是ABC的中位线MNBC故正确即正确的结论有故选:C【点睛】本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键7、A【分析】利用直角三角形斜边的中线的性质可得答案【详解】解:C=90°,若D为斜边AB上的中点,CD=AB,AB的长为10,DC=5,故选:A【点睛】此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半8、B【分析】根据三角形中位线定理得到PD=BF=6,PDBC,根据平行线的性质得到PDA=CBA,同理得到PDQ=90°,根据勾股定理计算,得到答案【详解】解:C=90°,CAB+CBA=90°,点P,D分别是AF,AB的中点,PD=BF=6,PD/BC,PDA=CBA,同理,QD=AE=8,QDB=CAB,PDA+QDB=90°,即PDQ=90°,PQ=10,故选:B【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键9、D【分析】根据题意可知当EAP与PBQ全等时,有两种情况:当EA=PB时,APEBQP,当AP=BP时,AEPBQP,分别按照全等三角形的性质及行程问题的基本数量关系求解即可【详解】解:当EAP与PBQ全等时,有两种情况:当EA=PB时,APEBQP(SAS),AB=10cm,AE=6cm,BP=AE=6cm,AP=4cm,BQ=AP=4cm;动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,点P和点Q的运动时间为:4÷2=2s,v的值为:4÷2=2cm/s;当AP=BP时,AEPBQP(SAS),AB=10cm,AE=6cm,AP=BP=5cm,BQ=AE=6cm,5÷2=2.5s,2.5v=6,v=故选:D【点睛】本题考查矩形的性质及全等三角形的判定与性质等知识点,注意数形结合和分类讨论并熟练掌握相关性质及定理是解题的关键10、C【分析】过点P作交于点M,由菱形得,由,得,故可得,根据SAS证明,求出,即可求出【详解】如图,过点P作交于点M,四边形ABCD是菱形,在与中,在中,即,解得:,故选:C【点睛】此题主要考查了菱形的性质以及求不规则图形的面积等知识,掌握扇形的面积公式是解答此题的关键二、填空题1、【分析】利用正方形ABCD的及勾股定理,求出的长,再根据勾股定理求出和的长,找出规律,即可得出正方形的边长【详解】解:A,B,C,D是正方形各边的中点,正方形ABCD的边长为,即AB=,解得:,=2,同理=2,=4 ,=,的边长为故答案为:【点睛】本题考查了正方形性质、勾股定理的应用,解此题的关键是能根据计算结果得出规律,本题具有一定的代表性,是一道比较好的题目2、6【分析】根据多边形内角和公式(n-2)×180°及多边形外角和始终为360°可列出方程求解问题【详解】解:由题意得:(n-2)×180°=360°×2,解得:n=6;故答案为6【点睛】本题主要考查多边形内角和及外角和,熟练掌握多边形的内角和公式及外角和是解题的关键3、#【分析】根据勾股定理求出AC,根据矩形性质得出ABC=90°,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可【详解】解:四边形ABCD是矩形, ABC=90°,BD=AC,BO=OD, AB=6cm,BC=8cm, 由勾股定理得:(cm), DO=5cm, 点E、F分别是AO、AD的中点, EF=OD=2.5cm, 故答案为:2.5【点睛】本题考查了矩形的性质的应用,勾股定理,三角形中位线的应用,解本题的关键是求出OD长及证明EF=OD4、【分析】设,由正方形的性质和勾股定理求出的长,可得的长,再求出的长,得出的长,进而可得结果【详解】解:设,四边形为正方形,点为的中点,四边形为正方形,故答案为:【点睛】本题考查了正方形的性质以及勾股定理,解题的关键是熟练掌握正方形的性质,由勾股定理求出的长5、【分析】由正方形的对称性可知,PBPD,当B、P、E共线时PD+PE最小,求出BE即可【详解】解:正方形中B与D关于AC对称,PBPD,PD+PEPB+PEBE,此时PD+PE最小,正方形ABCD的面积为18,ABE是等边三角形,BE3,PD+PE最小值是3,故答案为:3【点睛】本题考查轴对称求最短距离,熟练掌握正方形的性质是解题的关键三、解答题1、(1)见解析;(2)CDA20°;CAD+41°CBD【分析】(1)由三角形外角的性质可得ACD=A+ABC,ECDE+EBC;由角平分线的性质可得,利用等量代换,即可求得A与E的关系;(2)根据三角形的内角和定理和角平分线的定义即可解答;设CBD=a,根据已知条件得到ABC=180°-2a,根据三角形的内角和定理和角平分线的定义即可解答【详解】(1)证明:ACD是ABC的外角ACDA+ABCCE平分ACD又ECDE+EBCBE平分ABC;(2)ACD130°,BCD50°ACBACDBCD130°50°80°CBA40°BAC180°ACBABC180°80°40°60°AD平分BACCDA180°CADACD20°;CAD+41°CBD设CBDABD+CBD180°ABC180°2ACB82°CAB180°ABCACB180°(180°2)82°282°AD平分BACCADCAB41°CAD+41°CBD【点睛】本题主要考查了多边形的内角与外角、三角形内角和定理、角平分线等知识点,掌握三角形内角和是180°是解答本题的关键2、【分析】由矩形的性质可知ABDC,AC90°,由翻折的性质可知ABBF,AF90°,于是可得到FC,BFDC,然后依据AAS可证明DCEBFE,依据勾股定理求得BC的长,由全等三角形的性质可知BEDE,最后再EDC中依据勾股定理可求得ED的长,从而得到BE的长【详解】解:四边形ABCD为矩形,ABCD,AC90°由翻折的性质可知FA,BFAB,BFDC,FC在DCE与BEF中,DCEBFE在RtBDC中,由勾股定理得:BCDCEBFE,BEDE设BEDEx,则EC12x在RtCDE中,CE2CD2DE2,即(12x)252x2解得:xBE【点睛】本题主要考查的是翻折的性质、勾股定理的应用、矩形的性质,依据勾股定理列出关于x的方程是解题的关键3、(1)等边;(2)见解析;(3)成立,理由见解析【分析】(1)根据含30度角的直角三角形的性质,直角三角形斜边上的中线等于斜边的一半可证明,即可证明OBC是等边三角形;(2)先证明,即可利用SAS证明,得到;(3)先证明,即可利用SAS证明,得到【详解】(1)ACB=90°,A=30°,O是AB的中点,OBC是等边三角形,故答案为:等边;(2)由(1)可知,是等边三角形,即,在和中,;(3)成立,证明:由(1)可知,是等边三角形,即,在和中,【点睛】本题主要考查了等边三角形的性质与判定,全等三角形的性质与判定,含30度角的直角三角形的性质,直角三角形斜边上的中线,熟练掌握等边三角形的性质与判定条件是解题的关键4、(1);(2)的大小是定值,证明见解析【分析】(1)先根据等边三角形的性质、勾股定理可得,从而可得,再利用勾股定理可得,然后根据等边三角形的性质可得,最后根据直角三角形斜边上的中线等于斜边的一半即可得;先根据直角三角形斜边上的中线等于斜边的一半可得,再根据等腰三角形的性质可得,从而可得,然后根据四边形的内角和即可得;(2)连接,先证出,根据全等三角形的性质可得,从而可得,再根据三角形中位线定理可得,然后根据三角形的外角性质、角的和差即可得出结论【详解】解:(1)是等边三角形,是等边三角形,即,又点为的中点,;如图,连接,由(1)知,点为的中点,;(2)的大小是定值,证明如下:如图,连接,和都是等边三角形,即,在和中,点为的中点,点为的中点,即点是的中点,的大小为定值【点睛】本题考查了等边三角形的性质、直角三角形斜边上的中线等于斜边的一半、三角形中位线定理等知识点,较难的是题(2),通过作辅助线,构造全等三角形和利用到三角形中位线定理是解题关键5、见解析【分析】利用矩形性质以及等边对等角,证明,最后利用边角边即可证明【详解】解:四边形ABCD是矩形,在和中, 【点睛】本题主要是考查了矩形的性质、等边对等角以及全等三角形的判定,熟练地利用矩形性质以及等边对等角,求证边和角相等,进而证明三角形全等,这是解决该题的关键

    注意事项

    本文(2021-2022学年度强化训练京改版八年级数学下册第十五章四边形达标测试试题(含详解).docx)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开