2021-2022学年人教版初中数学七年级下册第九章不等式与不等式组专题练习试卷(含答案解析).docx
-
资源ID:28170778
资源大小:237.41KB
全文页数:17页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年人教版初中数学七年级下册第九章不等式与不等式组专题练习试卷(含答案解析).docx
初中数学七年级下册第九章不等式与不等式组专题练习(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、若实数a,b满足ab,则下列不等式一定成立的是( )Aab+2Ba1b2CabDa2b22、关于x的方程32x3(k2)的解为非负整数,且关于x的不等式组无解,则符合条件的整数k的值的和为()A5B2C4D63、不等式的解集在数轴上表示正确的是( )ABCD4、设m为整数,若方程组的解x、y满足,则m的最大值是( )A4B5C6D75、若0m1,则m、m2、的大小关系是( )Amm2Bm2mCmm2Dm2m6、若a+b+c0,且|a|b|c|,则下列结论一定正确的是()Aabc0Babc0CacabDacab7、不等式组的解是xa,则a的取值范围是( )Aa3Ba=3Ca3Da38、如果关于x的不等式组有且只有3个奇数解,且关于y的方程3y+6a=22-y的解为非负整数,则符合条件的所有整数a的积为( )A-3B3C-4D49、若,则下列不等式不一定成立的是( )ABCD10、若ab,则()Aa1bBb+1aC2a+12b+1Da1b+1二、填空题(5小题,每小题4分,共计20分)1、若是关于x的一元一次不等式,则m的值为_2、不等式组的解是_3、不等式组的解集是_4、如果,那么_05、已知实数x,y满足xy3,且x3,y1,则xy的取值范围_三、解答题(5小题,每小题10分,共计50分)1、求不等式6411x4的正整数解2、解不等式:(1)2(x1)3(3x+2)x+5(2)3、解下列不等式(1)2x3x;(2)2(x+4)3(x1)4、某校为了丰富学生的业余生活,组织了一次棋类的比赛,准备购买若干跳棋和军棋作为奖品,若购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元(1)求购买一副跳棋和一副军棋各需要多少钱?(2)学校准备购买跳棋与军棋共80副作为奖品,根据规定购买的总费用不能超过600元,则学校最多可以购买多少副军棋?5、解不等式组,并把解集表示在数轴上-参考答案-一、单选题1、B【分析】根据不等式的性质即可依次判断【详解】解:当ab时,ab+2不一定成立,故错误;当ab时,a1b1b2,成立,当ab时,ab,故错误;当ab时,a2b2不一定成立,故错误;故选:B【点睛】本题主要考查了不等式的性质的灵活应用,解题的关键是基本知识的熟练掌握2、C【分析】先求出32x3(k2)的解为x,从而推出,整理不等式组可得整理得:,根据不等式组无解得到k1,则1k3,再由整数k和是整数进行求解即可【详解】解:解方程32x3(k2)得x,方程的解为非负整数,0,把整理得:,由不等式组无解,得到k1,1k3,即整数k0,1,2,3,是整数,k1,3,综上,k1,3,则符合条件的整数k的值的和为4故选C【点睛】本题主要考查了解一元一次方程,根据一元一次不等式组的解集情况求参数,解题的关键在于能够熟练掌握相关知识进行求解3、A【分析】先解不等式,再利用数轴的性质解答【详解】解:解得,不等式的解集在数轴上表示为:故选:A【点睛】此题考查解不等式及在数轴上表示不等式的解集,正确解不等式及掌握数轴的性质是解题的关键4、B【分析】先把m当做常数,解一元二次方程,然后根据得到关于m的不等式,由此求解即可【详解】解:把×3得:,用+得:,解得,把代入得,解得,即,解得,m为整数,m的最大值为5,故选B【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法5、B【分析】根据0m1,可得m越小平方越小, 1,继而结合选项即可得出答案【详解】解:0m1,可得m2m,1,可得:m2m故选:B【点睛】此题考查了不等式的性质及有理数的乘方,属于基础题,关键是掌握当0m1时,m的指数越大则数值越小,难度一般6、C【分析】由的绝对值最小,分析不符合题意,再由 分析可得中至少有一个负数,至多两个负数,再分情况讨论即可得到答案.【详解】解: a+b+c0,且|a|b|c|,当时,则 则 不符合题意; 从而:中至少有一个负数,至多两个负数,当 且|a|b|c|, 此时B,C成立,A,D不成立,当 且|a|b|c|, 此时A,C成立,B,D不成立,综上:结论一定正确的是C,故选C【点睛】本题考查的是绝对值的含义,有理数的和的符号的确定,有理数积的符号的确定,利用数轴表示有理数,扎实的基础知识是解题的关键.7、D【分析】根据不等式组的解集为xa,结合每个不等式的解集,即可得出a的取值范围【详解】解:不等式组的解是xa,故选:D【点睛】本题考查了求不等式组的解集的方法,熟记口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解本题的关键8、A【分析】先求解不等式组,根据解得范围确定的范围,再根据方程解的范围确定的范围,从而确定的取值,即可求解【详解】解:由关于x的不等式组解得关于x的不等式组有且只有3个奇数解,解得关于y的方程3y+6a=22-y,解得关于y的方程3y+6a=22-y的解为非负整数,且为整数解得且为整数又,且为整数符合条件的有、符合条件的所有整数a的积为故选:A【点睛】本题主要考查一元一次不等式组的解法及一元一次方程的解法,熟练掌握一元一次不等式组的解法及一元一次方程的解法是解题的关键9、D【分析】根据不等式的性质判断即可【详解】解:A、两边都加2,不等号的方向不变,故A不符合题意;B、两边都乘以2,不等号的方向不变,故B不符合题意;C、两边都除以2,不等号的方向不变,故C不符合题意;D、当b0a,且时,a2b2,故D符合题意;故选:D【点睛】本题主要考查了不等式的基本性质(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变(2)不等式两边乘(或除以)同一个正数,不等号的方向不变(3)不等式两边乘(或除以)同一个负数,不等号的方向改变10、C【分析】举出反例即可判断A、B、D,根据不等式的性质即可判断C【详解】解:A、若a0.5,b0.4,ab,但是a1b,不符合题意;B、若a3,b1,ab,但是b+1a,不符合题意;C、ab,2a+12b+1,符合题意;D、若a0.5,b0.4,ab,但是a1b+1,不符合题意故选:C【点睛】此题考查不等式的性质,对性质的理解是解题的关键不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变;不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变二、填空题1、1【分析】根据一元一次不等式的定义可得:且,求解即可【详解】解:根据一元一次不等式的定义可得:且解得故答案为1【点睛】此题考查了一元一次不等式的定义,解题的关键是掌握一元一次不等式的概念2、【分析】分别解不等式组中的两个不等式,再确定两个不等式的解集的公共部分,从而可得答案.【详解】解:由得: 由得: 整理得: 所以不等式组的解集为: 故答案为:【点睛】本题考查的是不等式组的解法,掌握解一元一次不等式组的方法是解题的关键.3、【分析】根据一元一次不等式组的解法可直接进行求解【详解】解:,由可得:,由可得:,原不等式组的解集为;故答案为【点睛】本题主要考查一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解题的关键4、【分析】由可得:异号,又与同号,所以而,即可求解【详解】解:由可得:异号,又与同号,所以而,所以,故答案为:【点睛】本题考查不等式的性质,得出与同号是解题关键5、【分析】先设xy=m,利用xy3,构造方程组,求出用m表示x、y的代数式,再根据x3,y1,列不等式求出m的范围即可【详解】解:设xy=m,+得,-得,y1,解得,x3,解得,xy的取值范围故答案为【点睛】本题考查方程与不等式综合问题,解题关键是设出xy=m,与xy3,构造方程组从中求出,再出列不等式三、解答题1、1,2,3,4,5【解析】【分析】先求出不等式的解集,再求出不等式的正整数解即可【详解】解:移项得:-11x4-64,合并同类项得:-11x-60,不等式的解集为x,正整数解为1,2,3,4,5【点睛】本题考查了解一元一次不等式和不等式的整数解,能求出不等式的解集是解此题的关键2、(1)(2)【解析】【分析】(1)去括号,移项合并同类项,求解不等式即可;(2)去分母,去括号,移项合并同类项,求解不等式即可【详解】解:(1)去括号,得:2x29x6x+5,移项,得:2x9xx5+2+6,合并,得:8x13,系数化为1,得:;(2)去分母,得:5(2+x)3(2x1)30,去括号,得:10+5x6x330,移项,得:5x6x33010,合并同类项,得:x43,系数化为1,得:x43【点睛】此题考查了一元一次不等式的求解,解题的关键是掌握一元一次不等式的求解步骤3、(1)x1;(2)x11【解析】【分析】(1)根据解一元一次不等式基本步骤:、移项、合并同类项、系数化为1可得;(2)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得【详解】解:(1)移项,得:2x+x3,合并同类项,得:3x3,系数化为1,得:x1;(2)去括号,得:2x+83x3,移项,得:2x3x38,合并同类项,得:x11,系数化为1,得:x11【点睛】本题考查了解一元一次不等式,掌握解一元一次不等式的步骤是解题的关键4、(1)购买一副跳棋和一副军棋各需要6元、10元;(2)学校最多可以买30副军棋【解析】【分析】(1)设购买一副跳棋和一副军棋各需要x元、y元,然后根据购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元,列出方程求解即可;(2)设购买m副军棋,则购买副跳棋,然后根据购买的总费用不能超过600元,列出不等式求解即可【详解】解:(1)设购买一副跳棋和一副军棋各需要x元、y元,由题意得:,解得,购买一副跳棋和一副军棋各需要6元、10元,答:购买一副跳棋和一副军棋各需要6元、10元;(2)设购买m副军棋,则购买副跳棋,由题意得:,即,解得,学校最多可以买30副军棋,答:学校最多可以买30副军棋【点睛】本题主要考查了二元一次方程组和一元一次不等式的实际应用,解题的关键在于能够准确理解题意,列出式子求解5、,图见解析【解析】【分析】分别解出两个不等式的解集,并表示在数轴上,再找到公共解集即可解题【详解】解:由得 由得 把不等式组的解集表示在数轴上,如图,原不等式组的解为【点睛】本题考查解一元一次不等式组、在数轴上表示不等式组的解集,熟知:同大取大,同小取小,大小小大中间找,大大小小找不到的原则是解题的关键