2021-2022学年基础强化京改版八年级数学下册第十五章四边形难点解析试题(无超纲).docx
-
资源ID:28171055
资源大小:835.83KB
全文页数:31页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年基础强化京改版八年级数学下册第十五章四边形难点解析试题(无超纲).docx
京改版八年级数学下册第十五章四边形难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知是平分线上的一点,是的中点,如果是上一个动点,则的最小值为( )ABCD2、下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD3、在RtABC中,C90°,若D为斜边AB上的中点,AB的长为10,则DC的长为( )A5B4C3D24、如图,小明从点A出发沿直线前进10m到达点B,向左转,后又沿直线前进10m到达点C,再向左转30°后沿直线前进10m到达点照这样走下去,小明第一次回到出发点A,一共走了( )米A80B100C120D1405、下列各APP标识的图案是中心对称图形的是()ABCD6、顺次连接对角线互相垂直的四边形的各边中点,所形成的新四边形是()A菱形B矩形C正方形D三角形7、下列四个图案中,是中心对称图形的是()ABCD8、下列图案中既是轴对称图形又是中心对称图形的是( )ABCD9、如图,在平面直角坐标系中,点A是x轴正半轴上的一个动点,点C是y轴正半轴上的点,于点C已知,点B到原点的最大距离为( )A22B18C14D1010、一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为( )A14或15或16B15或16或17C15或16D16或17第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,以矩形的对角线为直径画圆,点、在该圆上,再以点为圆心,的长为半径画弧,交于点若,则图中影部分的面积和为 _(结果保留根号和2、将ABC纸片沿DE按如图的方式折叠若C50°,185°,则2等于_3、如图,正方形ABCD的边长为做正方形,使A,B,C,D是正方形各边的中点;做正方形,使是正方形各边的中点以此类推,则正方形的边长为_ 4、如图,在平行四边形ABCD中,B45°,AD8,E、H分别为边AB、CD上一点,将ABCD沿EH翻折,使得AD的对应线段FG经过点C,若FGCD,CG4,则EF的长度为 _5、如图,在正方形ABCD中,AB4,E为对角线AC上与A,C不重合的一个动点,过点E作EFAB于点F,EGBC于点G,连接DE,FG,下列结论:DEFG;DEFG;BFGADE;FG的最小值为3其中正确结论的序号为_三、解答题(5小题,每小题10分,共计50分)1、(1)如图1中,A90°,请用直尺和圆规作一条直线,把ABC分割成两个等腰三角形(不写作法,但须保留作图痕迹)(2)已知内角度数的两个三角形如图2、图3所示请你判断,能否分别画一条直线把它们分割成两个等腰三角形?若能,请画出直线,并标注底角的度数(3)一个三角形有一内角为48°,如果经过其一个顶点作直线能把其分成两个等腰三角形,那么它的最大的内角可能值为 2、如图,在菱形ABCD中,点E,F分别是边AB和BC上的点,且BEBF求证:DEFDFE3、如图,在正方形中,是直线上的一点,连接,过点作,交直线于点,连接(1)当点在线段上时,如图,求证:;(2)当点在直线上移动时,位置如图、图所示,线段,与之间又有怎样的数量关系?请直接写出你的猜想,不需证明4、如图,在等腰三角形ABC中,ABBC,将等腰三角形ABC绕顶点B按逆时针方向旋转角a到的位置,AB与相交于点D,AC与分别交于点E,F(1)求证:BCF;(2)当Ca时,判定四边形的形状并说明理由5、综合与实践(1)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若MBN45°,则MN,AM,CN的数量关系为 (2)如图2,在四边形ABCD中,BCAD,ABBC,A+C180°,点M、N分别在AD、CD上,若MBNABC,试探索线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明(3)如图3,在四边形ABCD中,ABBC,ABC+ADC180°,点M、N分别在DA、CD的延长线上,若MBNABC,试探究线段MN、AM、CN的数量关系为 -参考答案-一、单选题1、C【分析】根据题意由角平分线先得到是含有角的直角三角形,结合直角三角形斜边上中线的性质进而得到OP,DP的值,再根据角平分线的性质以及垂线段最短等相关内容即可得到PC的最小值【详解】解:点P是AOB平分线上的一点,PDOA,M是OP的中点,点C是OB上一个动点当时,PC的值最小,OP平分AOB,PDOA,最小值,故选C【点睛】本题主要考查了角平分线的性质、含有角的直角三角形的选择,直角三角形斜边上中线的性质、垂线段最短等相关内容,熟练掌握相关性质定理是解决本题的关键2、B【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意;故选:B【点睛】本题考查了轴对称图形和中心对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键3、A【分析】利用直角三角形斜边的中线的性质可得答案【详解】解:C=90°,若D为斜边AB上的中点,CD=AB,AB的长为10,DC=5,故选:A【点睛】此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半4、C【分析】由小明第一次回到出发点A,则小明走过的路程刚好是一个多边形的周长,由多边形的外角和为,每次的转向的角度的大小刚好是多边形的一个外角,则先求解多边形的边数,从而可得答案.【详解】解:由 可得:小明第一次回到出发点A,一个要走米,故选C【点睛】本题考查的是多边形的外角和的应用,掌握“由多边形的外角和为得到一共要走12个10米”是解本题的关键.5、C【分析】根据中心对称图形的概念对各选项分析判断即可得解【详解】A、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意;B、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意;C、图形关于中心旋转180°能完全重合,所以是中心对称图形,故本选项符合题意;D、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意故选:C【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合6、B【分析】先画出图形,再根据三角形中位线定理得到所得四边形的对边平行且相等,那么其必为平行四边形,然后根据邻边互相垂直得出四边形是矩形【详解】解:如图,、分别是、的中点,四边形是平行四边形,平行四边形是矩形,又与不一定相等,与不一定相等,矩形不一定是正方形,故选:B【点睛】本题考查了三角形中位线定理、矩形的判定等知识点,熟练掌握三角形中位线定理是解题关键7、A【分析】中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可【详解】解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,故选:A【点睛】本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键8、B【详解】A.是轴对称图形,不是中心对称图形,故不符合题意;B. 既是轴对称图形,又是中心对称图形,故符合题意;C.是轴对称图形,不是中心对称图形,故不符合题意;D.既不是轴对称图形,也不是中心对称图形,故不符合题意;故选B【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形9、B【分析】首先取AC的中点E,连接BE,OE,OB,可求得OE与BE的长,然后由三角形三边关系,求得点B到原点的最大距离【详解】解:取AC的中点E,连接BE,OE,OB,AOC90°,AC16,OECEAC8,BCAC,BC6,BE10,若点O,E,B不在一条直线上,则OBOE+BE18若点O,E,B在一条直线上,则OBOE+BE18,当O,E,B三点在一条直线上时,OB取得最大值,最大值为18故选:B【点睛】此题考查了直角三角形斜边上的中线的性质以及三角形三边关系此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用10、A【分析】由题意先根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论即可【详解】解:设新多边形的边数为n,则(n-2)180°=2340°,解得:n=15,若截去一个角后边数增加1,则原多边形边数为14,若截去一个角后边数不变,则原多边形边数为15,若截去一个角后边数减少1,则原多边形边数为16,所以多边形的边数可以为14,15或16故选:A【点睛】本题考查多边形内角与外角,熟练掌握多边形的内角和公式(n-2)180°(n为边数)是解题的关键二、填空题1、【分析】设的中点为,连接,先求出,则,然后求出,最后根据求解即可【详解】解:设的中点为,连接,四边形ABCD是矩形,ABC=90°,又CAB=30°,故答案为:【点睛】本题主要考查了矩形的性质,扇形面积公式,解题的关键在于能够根据题意得到2、【分析】利用三角形的内角和定理以及折叠的性质,求出,利用四边形内角和为,即可求出2【详解】解:在中,在中, 由折叠性质可知: ,四边形的内角和为, , ,且185°,故答案为:【点睛】本题主要是考查了三角形和四边形的内角和定理,熟练利用三角形内角和定理,求出两角之和,最后利用四边形的内角和求得某角的度数,这是解决该题的关键3、【分析】利用正方形ABCD的及勾股定理,求出的长,再根据勾股定理求出和的长,找出规律,即可得出正方形的边长【详解】解:A,B,C,D是正方形各边的中点,正方形ABCD的边长为,即AB=,解得:,=2,同理=2,=4 ,=,的边长为故答案为:【点睛】本题考查了正方形性质、勾股定理的应用,解此题的关键是能根据计算结果得出规律,本题具有一定的代表性,是一道比较好的题目4、【分析】延长CF与AB交于点M,由平行四边形的性质得BC长度,GMAB,由折叠性质得GF,EFM,进而得FM,再根据EFM是等腰直角三角形,便可求得结果【详解】解:延长CF与AB交于点M,FGCD,ABCD,CMAB,B=45°,BC=AD=8,CM=4,由折叠知GF=AD=8,CG=4,MF=CM-CF=CM-(GF-CG)=4-4,EFC=A=180°-B=135°,MFE=45°,EF=MF=(4-4)=8-4故答案为:8-4【点睛】本题主要考查了平行四边形的性质,折叠的性质,解直角三角形的应用,关键是作辅助线构造直角三角形5、【分析】连接BE,可得四边形EFBG为矩形,可得BEFG;由AEBAED可得DEBE,所以DEFG;由矩形EFBG可得OFOB,则OBFOFB;由OBFADE,则OFBADE;由四边形ABCD为正方形可得BAD90°,即AHD+ADH90°,所以AHD+OFH90°,即FMH90°,可得DEFG;由中的结论可得BFGADE;由于点E为AC上一动点,当DEAC时,根据垂线段最短可得此时DE最小,最小值为2,由知FGDE,所以FG的最小值为2【详解】解:连接BE,交FG于点O,如图,EFAB,EGBC,EFBEGB90°ABC90°,四边形EFBG为矩形FGBE,OBOFOEOG四边形ABCD为正方形,ABAD,BACDAC45°在ABE和ADE中,ABEADE(SAS)BEDEDEFG正确;延长DE,交FG于M,交FB于点H,ABEADE,ABEADE由知:OBOF,OFBABEOFBADEBAD90°,ADE+AHD90°OFB+AHD90°即:FMH90°,DEFG正确;由知:OFBADE即:BFGADE正确;点E为AC上一动点,根据垂线段最短,当DEAC时,DE最小ADCD4,ADC90°,AC4DEAC2由知:FGDE,FG的最小值为2,错误综上,正确的结论为:故答案为:【点睛】本题考查了全等三角形的性质与判定,正方形的性质,勾股定理,垂线段最短,掌握正方形的性质是解题的关键三、解答题1、(1)见解析;(2)见解析;(3)108°【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,作BC的垂直平分线即可确定点E,连接AE即可;(2)分别以24°为底角,可分割出两个等腰三角形;(3)利用图1、2、3中三角形内角之间的关系进行判断【详解】解:(1)如图,作BC的垂直平分线交BC于E,连接AE,则直线AE即为所求;(2)如图:(3)根据(1)(2)中三个角之间的关系可知:当三角形是直角三角形时,肯定可以分割成两个等腰三角形,此时最大角为90°;当一个角是另一个三倍时,也肯定可以分割成两个等腰三角形,此时最大角为99°;如图3,此时最大角为108°综上所述:最大角为108°,故答案为:108°【点睛】本题主要考查垂直平分线的尺规作图、直角三角形斜边中线定理及等腰三角形的性质,熟练掌握垂直平分线的尺规作图、直角三角形斜边中线定理及等腰三角形的性质是解题的关键2、见解析【分析】根据菱形的性质可得AB=BC=CD=AD,A=C,再由BE=BF,可推出AE=CF,即可利用SAS证明ADECDF得到DE=DF,则DEF=DFE【详解】解:四边形ABCD是菱形,AB=BC=CD=AD,A=C,BE=BF,AB-BE=BC-BF,即AE=CF,ADECDF(SAS),DE=DF,DEF=DFE【点睛】本题主要考查了菱形的性质,全等三角形的性质与判定,等腰三角形的性质与判定,解题的关键在于能够熟练掌握菱形的性质3、(1)见解析;(2)图中,图中【分析】(1)在上截取,连接,可先证得,则,进而可证得AED为等腰直角三角形,即可得证;(2)仿照(1)的证明思路,作出相应的辅助线,即可证得对应的,与之间的数量关系【详解】解:(1)证明:如图,在上截取,连接四边形是正方形,ECF是等腰直角三角形,在中,;(2)图:,理由如下:如下图,在延长线上截取,连接四边形是正方形, ,ECF是等腰直角三角形, 在中,;图:如图,在DE上截取DF=BE,连接四边形是正方形,ECF是等腰直角三角形,在中, 【点睛】本题是四边形综合题,考查了正方形的性质、全等三角形的判定及性质、等腰直角三角形、勾股定理等相关知识,正确作出辅助线构造全等三角形是解决本题的关键4、(1)见解析;(2)菱形,见解析【分析】(1)根据等腰三角形的性质得到AB=BC,A=C,由旋转的性质得到A1B=AB=BC,A=A1=C,A1BD=CBC1,根据全等三角形的判定定理得到BCFBA1D;(2)由(1)可知=A=C=a,B=B=AB=BC通过证明FBC=可得 BC,利用EC=C=180°推出EC+=180° 得到BCE从而证明四边形为平行四边形再利用B=BC可证明四边形为菱形【详解】(1)证明:等腰三角形ABC旋转角a得到BD=FBC=a=A=C B=B=AB=BCBCF(ASA) (2)解:四边形为菱形理由:C=a由(1)可知=A=C=a B=B=AB=BC又 BD=FBC=a FBC=BC EC=C=180°EC+=180° BCE四边形为平行四边形又B=BC 四边形为菱形【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰三角形的性质,正确的理解题意是解题的关键5、(1)MN=AM+CN;(2)MN=AM+CN,理由见解析;(3)MN=CN-AM,理由见解析【分析】(1)把ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',A=BCM',ABM=M'BC,可得到点M'、C、N三点共线,再由MBN=45°,可得M'BN=MBN,从而证得NBMNBM',即可求解;(2)把ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',A=BCM',ABM=M'BC,由A+C180°,可得点M'、C、N三点共线,再由MBNABC,可得到M'BN=MBN,从而证得NBMNBM',即可求解;(3)在NC上截取C M'=AM,连接B M',由ABC+ADC180°,可得BAM=C,再由ABBC,可证得ABMCB M',从而得到AM=C M',BM=B M',ABM=CB M',进而得到MA M'=ABC,再由MBNABC,可得MBNM'BN,从而得到NBMNBM',即可求解【详解】解:(1)如图,把ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',A=BCM',ABM=M'BC,在正方形ABCD中,A=BCD=ABC=90°,AB=BC ,BCM'+BCD=180°,点M'、C、N三点共线,MBN=45°,ABM+CBN=45°,M'BN=M'BC+CBN=ABM+CBN=45°,即M'BN=MBN,BN=BN,NBMNBM',MN= M'N,M'N= M'C+CN,MN= M'C+CN=AM+CN;(2)MN=AM+CN;理由如下:如图,把ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',A=BCM',ABM=M'BC,A+C180°,BCM'+BCD=180°,点M'、C、N三点共线,MBNABC,ABM+CBN=ABCMBN,CBN+M'BC =MBN,即M'BN=MBN,BN=BN,NBMNBM',MN= M'N,M'N= M'C+CN,MN= M'C+CN=AM+CN;(3)MN=CN-AM,理由如下:如图,在NC上截取C M'=AM,连接B M',在四边形ABCD中,ABC+ADC180°,C+BAD=180°,BAM+BAD=180°,BAM=C,ABBC,ABMCB M',AM=C M',BM=B M',ABM=CB M',MA M'=ABC,MBNABC,MBNMA M'=M'BN,BN=BN,NBMNBM',MN= M'N,M'N=CN-C M', MN=CN-AM故答案是:MN=CN-AM【点睛】本题主要考查了正方形的性质,全等三角形的性质和判定,图形的旋转,根据题意做适当辅助线,得到全等三角形是解题的关键