2021-2022学年浙教版初中数学七年级下册第四章因式分解专项训练试题(含答案解析).docx
-
资源ID:28171400
资源大小:212.95KB
全文页数:21页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年浙教版初中数学七年级下册第四章因式分解专项训练试题(含答案解析).docx
初中数学七年级下册第四章因式分解专项训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列各式中与b2a2相等的是()A.(ba)2B.(a+b)(ab)C.(a+b)(a+b)D.(a+b)(ab)2、已知mn2,则m2n24n的值为()A.3B.4C.5D.63、对于,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.是因式分解,是乘法运算D.是乘法运算,是因式分解4、在下列从左到右的变形中,不是因式分解的是()A.x2xx(x1)B.x2+3x1x(x+3)1C.x2y2(x+y)(xy)D.x2+2x+1(x+1)25、下列因式分解结果正确的是( )A.B.C.D.6、若x2+mx+n分解因式的结果是(x2)(x+1),则m+n的值为()A.3B.3C.1D.17、下列因式分解正确的是()A.x29(x3)(x3)B.x2x6(x2)(x3)C.3x6y33(x2y)D.x22x1(x1)28、下列各式从左到右的变形,属于因式分解的是( )A.B.C.D.9、下列各式从左到右的变形中,是因式分解的为( ).A.B.C.D.10、下列各式从左到右的变形属于因式分解的是( )A.B.C.D.11、下列分解因式的变形中,正确的是( )A.xy(xy)x(yx)x(yx)(y1)B.6(ab)22(ab)(2ab)(3ab1)C.3(nm)22(mn)(nm)(3n3m2)D.3a(ab)2(ab)(ab)2(2ab)12、小明是一名密码翻译爱好者,在他的密码手册中有这样一条信息:,分别对应下列六个字:勤,博,奋,学,自,主,现将因式分解,结果呈现的密码信息应是( )A.勤奋博学B.博学自主C.自主勤奋D.勤奋自主13、下列各式中,由左向右的变形是分解因式的是( )A.B.C.D.14、下列等式中,从左往右的变形为因式分解的是()A.a2a1a(a1)B.(ab)(a+b)a2b2C.m2m1m(m1)1D.m(ab)+n(ba)(mn)(ab)15、下列由左边到右边的变形中,属于因式分解的是( )A.(a1)(a1)a21B.a26a9(a3)2C.a22a1a(a2)1D.a25aa2(1)二、填空题(10小题,每小题4分,共计40分)1、若实数a、b满足:a+b6,ab10,则2a22b2_2、6x3y23x2y3分解因式时,应提取的公因式是_3、若多项式x2+ax+b可分解为(x+1)(x+4),则a_,b_4、将12张长为a,宽为b(ab)的小长方形纸片,按如图方式不重叠地放在大长方形ABCD内,未被覆盖的部分用阴影表示,若阴影部分的面积是大长方形面积的,则小长方形纸片的长a与宽b的比值为 _5、分解因式:_;_6、因式分解:_7、因式分解:_8、多项式各项的公因式是_9、因式分解:_10、若多项式可以分解成,则的值为_三、解答题(3小题,每小题5分,共计15分)1、在“整式乘法与因式分解“一章的学习中,我们采用了构造几何图形的方法研究问题,借助直观、形象的几何模型,加深对公式的认识和理解,从中感悟数形结合的思想方法,感悟几何与代数内在的统一性,根据课堂学习的经验,解决下列问题:(1)如图1,有若干张A类、C类正方形卡片和B类长方形卡片(其中ab),若取2张A类卡片、3张B类卡片、1张C类卡片拼成如图的长方形,借助图形,将多项式2a2+3ab+b2分解因式:2a2+3ab+b2 (2)若现有3张A类卡片,6张B类卡片,10张C类卡片,从其中取出若干张,每种卡片至少取一张,把取出的这些卡片拼成一个正方形(所拼的图中既不能有缝隙,也不能有重合部分),则拼成的正方形的边长最大是 (3)若取1张C类卡片和4张A类卡片按图3、4两种方式摆放,求图4中,大正方形中未被4个小正方形覆盖部分的面积(用含m、n的代数式表示)2、分解因式:3、阅读理解题由多项式乘法:,将该式从右到左使用,即可进行因式分解的公式:示例:分解因式:分解因式:多项式的特征是二次项系数为1,常数项为两数之积,一次项系数为这两数之和(1)尝试:分解因式:(_)(_);(2)应用:请用上述方法将多项式:、进行因式分解-参考答案-一、单选题1、C【分析】根据平方差公式直接把b2a2分解即可.【详解】解:b2a2(ba)(b+a),故选:C.【点睛】此题主要考查了公式法分解因式,关键是掌握平方差公式.平方差公式:a2-b2=(a+b)(a-b).2、B【分析】先根据平方差公式,原式可化为,再把已知代入可得,再应用整式的加减法则进行计算可得,代入计算即可得出答案.【详解】解:=把代入上式,原式=,把代入上式,原式=2×2=4.故选:B.【点睛】本题考查了运用平方差公式进行因式分解,解题的关键是熟练掌握平方差公式.3、D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据因式分解的定义判断即可.【详解】解:,属于整式乘法,不属于因式分解;,等式从左到右的变形属于因式分解;故选:D.【点睛】本题考查了整式的乘法和因式分解的定义,注意:把一个多项式化成几个整式的积的形式,叫因式分解.4、B【分析】根据因式分解的定义,逐项分析即可,因式分解指的是把一个多项式分解为几个整式的积的形式.【详解】A. x2xx(x1),是因式分解,故该选项不符合题意; B. x2+3x1x(x+3)1,不是因式分解,故该选项符合题意;C. x2y2(x+y)(xy),是因式分解,故该选项不符合题意; D. x2+2x+1(x+1)2,是因式分解,故该选项不符合题意;故选B【点睛】本题考查了因式分解的定义,掌握因式分解的定义是解题的关键.5、C【分析】根据提公因式法、平方差公式以及十字相乘法进行解答.【详解】解:A、原式x(x4),故本选项不符合题意;B、原式(2x+y)(2xy),故本选项不符合题意;C、原式(x+1)2,故本选项符合题意;D、原式(x+1)(x6),故本选项不符合题意,故选:C.【点睛】本题主要考查了提公因式法、平方差公式以及十字相乘法因式分解,属于基础题.6、A【分析】先根据多项式乘以多项式法则进行计算,再根据已知条件求出m、n的值,最后求出答案即可.【详解】解:(x2)(x+1)x2+x2x2x2x2,二次三项式x2+mx+n可分解为(x2)(x+1),m1,n2,m+n1+(2)3,故选:A.【点睛】本题考查了多项式乘以多项式法则和分解因式,能够理解分解因式和多项式乘多项式是互逆运算是解决本题的关键.7、B【分析】利用公式法对A、D进行判断;根据十字相乘法对B进行判断;根据提公因式对C进行判断.【详解】解:A、x29不能分解,所以A选项不符合题意;B、x2x6(x2)(x3),所以B选项符合题意;C、3x6y33(x2y1),所以C选项不符合题意;D、x22x1在有理数范围内不能分解,所以D选项不符合题意.故选:B.【点睛】本题考查了因式分解十字相乘法等:对于x2(pq)xpq型的式子的因式分解.这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;可以直接将某些二次项的系数是1的二次三项式因式分解:x2(pq)xpq(xp)(xq).8、B【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A、是把一个单项式转化成两个单项式乘积的形式,故A错误;B、把一个多项式转化成三个整式乘积的形式,故B正确;C、是把一个多项式转化成一个整式和一个分式乘积的形式,故C错误;D、是整式的乘法,故D错误;故选:B.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式的乘法的区别.9、B【分析】根据因式分解的定义把一个多项式化成几个整式的积的形式,叫因式分解.然后对各选项逐个判断即可.【详解】解:A、两因式之间用加号连结,是和的形式不是因式分解,故本选项不符合题意;B、是因式分解,故本选项符合题意;C、将积化为和差形式,是多项式乘法运算,不是因式分解,故本选项不符合题意;D、两因式之间用加号连结,是和的形式,不是因式分解,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键 .10、B【分析】根据因式分解的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,可得答案.【详解】解:A、,属于整式乘法;B、,属于因式分解;C、,没把一个多项式转化成几个整式积的形式,不属于因式分解;D、,等式左边不是多项式,不属于因式分解;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.11、A【分析】按照提取公因式的方式分解因式,同时注意分解因式后的结果,一般而言每个因式中第一项的系数为正.【详解】解:A、xy(x-y)-x(y-x)=-x(y-x)(y+1),故本选项正确;B、6(a+b)2-2(a+b)=2(a+b)(3a+3b-1),故本选项错误;C、3(n-m)2+2(m-n)=(n-m)(3n-3m-2),故本选项错误;D、3a(a+b)2-(a+b)=(a+b)(3a2+3ab-1),故本选项错误.故选:A.【点睛】本题考查提公因式法分解因式.准确确定公因式是求解的关键.12、A【分析】将式子先提取公因式再用平方差公式因式分解可得:(x2-y2)a2-(x2-y2)b2=(x2-y2)(a2-b2)=(x+y)(x-y)(a+b)(a-b),再结合已知即可求解.【详解】解:(x2-y2)a2-(x2-y2)b2=(x2-y2)(a2-b2)=(x+y)(x-y)(a+b)(a-b),由已知可得:勤奋博学,故选:A.【点睛】本题考查了因式分解的应用;将已知式子进行因式分解,再由题意求是解题的关键.13、B【分析】判断一个式子是否是因式分解的条件是等式的左边是一个多项式,等式的右边是几个整式的积,左、右两边相等,根据以上条件进行判断即可.【详解】解:A、,不是因式分解;故A错误;B、,是因式分解;故B正确;C、,故C错误;D、,不是因式分解,故D错误;故选:B.【点睛】本题考查了因式分解的意义,把多项式转化成几个整式积的形式是解题关键.14、D【分析】把一个多项式化为几个整式的乘积的形式叫因式分解,根据定义对各选项进行一一分析判断即可.【详解】A. a2a1a(a1)从左往右的变形是乘积形式,但(a1)不是整式,故选项A不是因式分解;B. (ab)(a+b)a2b2,从左往右的变形是多项式的乘法,故选项B不是因式分解;C. m2m1m(m1)1,从左往右的变形不是整体的积的形式,故选项C不是因式分解;D.根据因式分解的定义可知 m(ab)+n(ba)(mn)(ab)是因式分解,故选项D从左往右的变形是因式分解.故选D.【点睛】本题考查因式分解,掌握因式分解的特征从左往右的变形后各因式乘积,各因式必须为整式,各因式之间不有加减号是解题关键.15、B【分析】根据因式分解的定义逐个判断即可.【详解】解:A.由左边到右边的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B.由左边到右边的变形属于因式分解,故本选项符合题意;C.由左边到右边的变形不属于因式分解,故本选项不符合题意;D.等式的右边不是整式的积的形式,即由左边到右边的变形不属于因式分解,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.二、填空题1、120【分析】将所求式子变形,然后根据a+b6,ab10,即可求出所求式子的值.【详解】解:2a22b22(a2b2)2(a+b)(ab),a+b6,ab10,原式2×6×10120,故答案为:120.【点睛】本题考查因式分解的应用、平方差公式,解答本题的关键是明确题意,求出所求式子的值.2、3x2y2【分析】分别找出系数的最大公约数和相同字母的最低指数次幂,即可确定公因式.【详解】解:6x3y2-3x2y3=3x2y2(2x-y),因此6x3y2-3x2y3的公因式是3x2y2.故答案为:3x2y2.【点睛】本题主要考查公因式的确定,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.3、5 4 【分析】把(x+1)(x+4)展开,合并同类项,可确定a、b的值.【详解】解:(x+1)(x+4),=,=,;故答案为:5,4.【点睛】本题考查了因式分解和多项式乘多项式,解题关键是熟练运用多项式的乘法法则进行计算,取得字母的值.4、4【分析】用a,b分别表示出大长方形的长和宽,根据阴影部分的面积是大长方形面积的,列式计算即可求解.【详解】解:根据题意得:AD=BC=8b+a,AB=CD=2b+a,阴影部分的面积是大长方形面积的,非阴影部分的面积是大长方形面积的,整理得:,即,则小长方形纸片的长a与宽b的比值为4.故答案为:4.【点睛】本题主要考查了整式的混合运算的应用,以及因式分解的应用,解题的关键是弄清题意,列出长方形面积的代数式及整式的混合运算顺序与运算法则.5、 【分析】第1个式子利用平方差公式分解即可;第1个式子先提取公因式,再利用完全平方公式继续分解即可.【详解】解:;故答案为:;.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.6、【分析】先提公因式,再用平方差公式分解即可.【详解】故答案为:【点睛】本题综合考查了提公因式法和公式法分解因式,一般地,因式分解的步骤是:先考虑提公因式;其次考虑用公式法.另外,因式分解要分解到再也不能分解为止.7、【分析】根据十字相乘法分解即可.【详解】解:=,故答案为:.【点睛】本题考查了因式分解,熟练掌握十字相乘法是解题的关键.8、4xy【分析】根据公因式的定义,找出系数的最大公约数,相同字母的最低指数次幂,然后即可确定公因式.【详解】解:多项式系数的最大公约数是4,相同字母的最低指数次幂是x和y,该多项式的公因式为4xy,故答案为:4xy.【点睛】本题考查多项式的公因式,掌握多项式每项公因式的求法是解题的关键.9、【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【详解】解:3x2-3y2=3(x2-y2)=3(x+y)(x-y).故答案为:3(x+y)(x-y).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10、-6【分析】直接利用完全平方公式完全平方公式:a2±2ab+b2=(a±b)2,得出k的值.【详解】解:多项式x2+kxy+9y2可以分解成(x-3y)2,x2+kxy+9y2=(x-3y)2=x2-6xy+9y2.k=-6.故答案为:-6.【点睛】此题主要考查了公式法分解因式,正确运用乘法公式分解因式是解题关键.三、解答题1、(1)(2a+b)(a+b);(2)a+3b;(3)mn【分析】(1)用两种方法表示正方形的面积,即可得到答案;(2)先算出纸片的总面积,然后凑出完全平方公式,进而即可求解;(3)根据图(3)用含m,n的代数式表示a,b,进而即可求解.【详解】解:(1)长方形的面积=2a2+3ab+b2,长方形的面积=(2a+b)(a+b),2a2+3ab+b2=(2a+b)(a+b),故答案是:(2a+b)(a+b);(2)由题意可知:这些纸片的总面积=3a2+6ab+10b2,需要拼成正方形,取a2+6ab+9b2=(a+3b)2,此时正方形的边长为a+3b,故答案是:a+3b;(3)由图(3)可知:2a+b=m,由图(4)可知:b-2a=n,大正方形中未被4个小正方形覆盖部分的面积=.【点睛】本题主要考查完全平方公式和几何图形的面积,用代数式表示图形的面积,掌握完全平方公式,是解题的关键.2、【分析】利用平方差公式因式分解即可【详解】原式 , , , , 【点睛】本题考查了因式分解-运用公式法,熟练掌握平方差公式是解题关键.3、(1)2,4;(2)(x-2)(x-3),(x+1)(x-6)【分析】(1)根据“常数项为两数之积,一次项系数为这两数之和”可得;(2)利用“x2+(a+b)x+ab=(x+a)(x+b)”进行因式分解即可.【详解】解:(1)x2+6x+8=x2+(2+4)x+2×4=(x+2)(x+4),故答案为:2,4;(2)x2-5x+6=x2+(-2)+(-3)x+(-2)×(-3)=(x-2)(x-3),x2-5x-6=x2+1+(-6)x+1×(-6)=(x+1)(x-6).【点睛】本题考查因式分解,解题的关键是理解“常数项为两数之积,一次项系数为这两数之和”.