2021-2022学年最新北师大版七年级数学下册第五章生活中的轴对称综合练习试题(含详细解析).docx
-
资源ID:28171679
资源大小:946.51KB
全文页数:22页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年最新北师大版七年级数学下册第五章生活中的轴对称综合练习试题(含详细解析).docx
七年级数学下册第五章生活中的轴对称综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在下列四个标志中,是轴对称图形的是( )ABCD2、下列四个图标中,是轴对称图形的是( )ABCD3、下列学习类APP的图表中,可看作是轴对称图形的是( )ABCD4、下列说法正确的是( )A轴对称图形是由两个图形组成的B等边三角形有三条对称轴C两个等面积的图形一定轴对称D直角三角形一定是轴对称图形5、下列图案,是轴对称图形的为()ABCD6、下列图形是四家电信公司的标志,其中是轴对称图形的是()ABCD7、如图,将一张长方形纸带沿EF折叠,点C、D的对应点分别为C'、D'若DEF,用含的式子可以将C'FG表示为()A2B90°+C180°D180°28、下列图形是轴对称图形的是( )ABCD9、下列几种著名的数学曲线中,不是轴对称图形的是( )A笛卡尔爱心曲线B蝴蝶曲线C费马螺线曲线D科赫曲线10、下列图形中,不一定是轴对称图形的是( )A直角三角形B等腰三角形C等边三角形D正方形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、小聪在研究题目“如图,在等腰三角形ABC中,的平分线与AB的垂直平分线OD交于点O,点C沿直线EF折叠后与点O重合,你能得出那些结论?”时,发现了下面三个结论:;图中没有60°的角;D、O、C三点共线请你直接写出其中正确的结论序号:_2、在一条可以折叠的数轴上,A,B表示的数分别是16,9,如图,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB1,则C点表示的数是_3、如图,把长方形沿EF对折后使两部分重合,若,则_4、下列图案是轴对称图形的有 _个5、如图所示,在ABC中,BAC60°,AD平分BAC交BC与点D,点P为边AC上的一动点,连接PB、PD,若ABAD,则PB+PD的最小值为 _三、解答题(5小题,每小题10分,共计50分)1、如图,在数轴上A点表示数a,B点表示数b,C点表示数c,已知数b是最小的正整数,且a、c满足(1)a=_,b=_,c=_;(2)若将数轴折叠,使得点A与点C重合,则点B与数_表示的点重合;(3)在(1)的条件下,数轴上的A,B,M表示的数为a,b,y,是否存在点M,使得点M到点A,点B的距离之和为6?若存在,请求出y的值;若不存在,请说明理由(4)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,求AB、AC、BC的长(用含t的式子表示)2、如图,正三角形网格中,已知两个小三角形被涂黑(1)再将图中1其余小三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形(画出两种不同的);(2)再将图中2其余小三角形涂黑两个,使整个被涂黑的图案构成一个轴对称图形(画出两种不同的)3、如图,将各图形补成关于直线l对称的图形4、如图所示,在平面直角坐标系中,已知A(0,1),B(2,0),C(4,3)(1)求出ABC的面积为 (2)画出ABC关于x轴对称的图形A1B1C1(3)已知P为y轴上一点,若ABP的面积为4,求点P的坐标5、(1)在下列网格中画出ABC关于l的对称图形A1B1C1;(2)在l上确定一点P,使得PA+PB最小(画图确定无误后黑色签字笔涂黑)-参考答案-一、单选题1、B【分析】轴对称图形的定义:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,据此逐项判断即可【详解】解:A中图形不是轴对称图形,不符合题意;B中图形是轴对称图形,符合题意;C中图形不是轴对称图形,不符合题意;D中图形不是轴对称图形,不符合题意,故选:B【点睛】本题考查轴对称的定义,理解定义,找准对称轴是解答的关键2、C【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行求解即可【详解】解:A、不是轴对称图形,故不符合题意;B、不是轴对称图形,故不符合题意;C、是轴对称图形,故符合题意;D、不是轴对称图形,故不符合题意;故选C【点睛】本题主要考查了轴对称图形的识别,解题的关键在于能够熟知轴对称图形的定义3、C【分析】根据轴对称图形的定义逐一进行判断即可得答案【详解】A.不是轴对称图形,故该选项不符合题意,B.不是轴对称图形,故该选项不符合题意,C.是轴对称图形,故该选项符合题意,D.不是轴对称图形,故该选项不符合题意,故选:C【点睛】本题考查的是轴对称图形,如果一个图形沿着一条直线对折后两部分完全重合,那么这样的图形就叫做轴对称图形;轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合4、B【分析】根据轴对称图形的定义逐一进行判定解答【详解】解:A、轴对称图形可以是1个图形,不符合题意;B、等边三角形有三条对称轴,即三边垂直平分线,符合题意;C、两个等面积的图形不一定轴对称,不符合题意;D、直角三角形不一定是轴对称图形,不符合题意故选:B【点睛】本题考查轴对称图形的定义与性质,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形折痕所在的这条直线叫做对称轴5、D【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可【详解】解:A不是轴对称图形,故本选项不符合题意;B不是轴对称图形,故本选项不符合题意;C不是轴对称图形,故本选项不符合题意D是轴对称图形,故本选项符合题意;故选:D【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合6、C【详解】解:A、不是轴对称图形,故此选项不符合题意;B、不是轴对称图形,故此选项不符合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不符合题意;故选:C【点睛】本题考查了轴对称图形的定义,解题的关键是熟练掌握轴对称图形的定义:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形7、D【分析】由平行线的性质得,由折叠的性质得,计算即可得出答案【详解】四边形ABCD是矩形,长方形纸带沿EF折叠,故选:D【点睛】本题考查平行线的性质与折叠的性质,掌握平行线的性质以及折叠的性质是解题的关键8、C【分析】根据轴对称图形的概念解答即可【详解】A不是轴对称图形,故本选项错误;B不是轴对称图形,故本选项错误;C是轴对称图形,故本选项正确;D不是轴对称图形,故本选项错误故选C【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合9、C【分析】根据轴对称图形的概念(平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形)求解【详解】解:A、是轴对称图形,故此选项不符合题意;B、是轴对称图形,故此选项不符合题意;C、不是轴对称图形,故此选项符合题意;D、是轴对称图形,故此选项不符合题意故选:C【点睛】本题考查了轴对称图形的概念,深刻理解轴对称图形的概念是解题关键10、A【分析】根据轴对称图形的概念求解即可【详解】解:根据轴对称的定义,等腰三角形、等边三角形、正方形一定是轴对称图形,直角三角形不一定是轴对称图形,故选:A【点睛】本题主要考查了轴对称图形的知识,掌握轴对称图形的概念是解决此类问题的关键二、填空题1、【分析】根据题意先求出BAO=25°,进而求出OBC=40°,求出COE=OCB=40°,最后根据等腰三角形的性质即可得出,进而再判断即可【详解】解:BAC=50°,AO为BAC的平分线,BAO=BAC=×50°=25°又AB=AC,ABC=ACB=65°DO是AB的垂直平分线,OA=OB,ABO=BAO=25°,OBC=ABC-ABO=65°-25°=40°AO为BAC的平分线,AB=AC,直线AO垂直平分BC,OB=OC,OCB=OBC=40°,将C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,OE=CECOE=OCB=40°;在OCE中,OEC=180°-COE-OCB=180°-40°-40°=100°,OEF=CEO=50°,正确;OCB=OBC=COE=40°,BOE=180°-OBC-COE-OCB =180°-40°-40°-40°=60°, 错误;ABO=BAO=25°,DO是AB的垂直平分线,DOB=90°-ABO=75°,OCB=OBC=40°,BOC=180°-OBC -OCB=180°-40°-40°=100°,DOC=DOB+BOC=75°+100°=175°,即D、O、C三点不共线,错误.故答案为:【点睛】本题考查等腰三角形的性质和三角形内角和180°以及翻折变换及其应用,解题的关键是根据翻折变换的性质,找出图中隐含的等量关系,灵活运用有关定理来分析判断2、-3【分析】根据A与B表示的数求出AB的长,再由折叠后AB的长,求出BC的长,即可确定出C表示的数【详解】解:A,B表示的数为16,9,AB9(16)25,折叠后AB1,BC12,点C在B的左侧,C点表示的数为9-12=3故答案为:-3【点睛】此题考查了数轴,折叠的性质,熟练掌握各自的性质是解本题的关键3、【分析】如图,先求解再利用轴对称的含义求解 再利用平行线的性质可得答案.【详解】解:如图, ,则 由对折可得: 长方形, 故答案为:【点睛】本题考查的是长方形的性质,邻补角的定义,轴对称的含义,平行线的性质,掌握以上知识是解题的关键.4、2【分析】根据轴对称图形的概念求解,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴【详解】解:第一幅图,是轴对称图形;第二幅图不是轴对称图形;第三幅图是轴对称图形;第四幅图不是轴对称图形;故答案为:2【点睛】此题主要考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合5、【分析】作D关于AC的对称点E,连接AE,BE,PE,由轴对称的性质得, ,PE=PD,DAP=EAP,则要想使PD+PB的值最小,则PB+PE的值最小,故当B、P、E三点共线时,PB+PE的值最小,即为PE,然后证明BAE=90°,即可利用勾股定理求解【详解】解:如图所示,作D关于AC的对称点E,连接AE,BE,PE,由轴对称的性质得, ,PE=PD,DAP=EAP,PB+PD=PB+PE,要想使PD+PB的值最小,则PB+PE的值最小,当B、P、E三点共线时,PB+PE的值最小,即为PE,BAC=60°,AD平分BAC,BAD=DAP=EAP=30°,BAE=90°,故答案为:【点睛】本题主要考查了轴对称最短路径问题,角平分线的定义,勾股定理,解题的关键在于能够根据题意作出辅助线求解三、解答题1、(1)-2,1,7;(2)4;(3)存在这样的点M,对应的y=2.5或y=-3.5;(4)3t+3,5t+9,2t+6【分析】(1)根据非负数的性质得出,解方程可求,根据数b是最小的正整数,可得b=1即可;(2)先求出折点表示的是,然后点B到折点的距离,利用有理数加法即可出点B对称点;(3)由题意知AB=3,点 M在AB之间,AM+BM=36,分两种情况讨论M在AB之外的情况第一种情况,当M在A点左侧时,由MA+MB=MA+MA+AB=6, 第二种情况,当M在B点右侧时由MA+MB=MB+MB+AB=6,解方程即可; (4)分别写出点A、B、C表示的数为,用含t的代数式表示出AB、AC、BC即可【详解】解:(1),且,解得,数b是最小的正整数,b=1,故答案为:-2,1,7;(2)将数轴折叠,使得点A与点C重合,AC中点D表示的数为,点B表示1,BD=2.5-1=1.5,点B对应的数是,2.5+1.5=4,故答案为:4;(3)由题意知AB=3,M在AB之间,AM+BM=36,分两种情况讨论M在AB之外的情况第一种情况,当M在A点左侧时由MA+MB=MA+MA+AB=6,得MA=1.5y-2,-2-y=1.5y=-3.5;第二种情况,当M在B点右侧时由MA+MB=MB+MB+AB=6,得MB=1.5y1,y-1=1,5y=2.5;故存在这样的点M,对应的y=2.5或y=-3.5(4)点A以每秒1个单位长度的速度向左运动,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,t秒钟后,A点表示-2-t,B点表示1+2t,C点表示7+4t;【点睛】本题考查了非负数和性质,一元一次方程的应用、数轴及两点间的距离,折叠性质,用代数式标数距离,解题的关键是利用数轴的特点能求出两点间的距离2、(1)见解析;(2)见解析【分析】(1)根据轴对称图形的性质得出答案即可;(2)根据轴对称图形的性质得出答案即可【详解】解:(1)如图:(2)如图: 【点睛】此题主要考查了利用轴对称设计图案,熟练掌握轴对称图形的性质是解题关键3、见解析【分析】根据轴对称图形的性质,先找出各关键点关于直线l的对称点,再顺次连接即可【详解】解:关于直线l对称的图形如图所示 【点睛】本题考查作图-轴对称变换,解题的关键是掌握轴对称变换的性质,几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始4、(1)4;(2)A1B1C1为所求作的三角形,画图见详解;(3)点P的坐标为(0,5)或(0,-3)【分析】(1)利用割补法求ABC面积,SABC=S梯形AODC-SABO-SCDB代入计算即可;(2)利用关于x轴对称,横坐标不变,纵坐标变为相反数,先求出A、B、C对称点坐标A1(0,-1),B1(2,0),C1(4,-3)然后描点A1(0,-1),B1(2,0),C1(4,-3)再顺次连结线段A1B1,B1C1C1A1即可;(3)点P在y轴上,根据三角形面积先求出底AP的长,在分两种情况点P在点A的上方与下方,求出点P的坐标即可【详解】解:(1)过点C作CDx轴于D,A(0,1),B(2,0),C(4,3),AO=1,OB=2,OD=4,CD=3,BD=OD-OB=4-2=2,SABC=S梯形AODC-SABO-SCDB=,=,=,=4,故答案为4;(2)ABC关于x轴对称的图形A1B1C1,A(0,1),B(2,0),C(4,3)A1(0,-1),B1(2,0),C1(4,-3)描点:A1(0,-1),B1(2,0),C1(4,-3)顺次连结A1B1,B1C1C1A1则A1B1C1为所求作的三角形;(3)点P在y轴上,以AP为底,以OB为高,SABP=,设点P的坐标为(0,n),当点P在点A下方,1-n=4,解得n=-3,当点P在点A上方, n-1=4,解得n=5,ABP的面积为4,点P的坐标为(0,5)或(0,-3)【点睛】本题考查割补法求三角形面积,用描点法化轴对称图形方法,根据三角形面积建立AP的方程,利用分类讨论思想求出点P坐标是解题关键5、(1)见解析;(2)见解析【分析】(1)找到关于直线的对称点,顺次连接,则即为所求;(2)根据轴对称的性质求线段和的最小值,连接交直线于点,则点即为所求【详解】(1)如图,找到关于直线的对称点,顺次连接,则即为所求;(2)如图,连接交直线于点,连接,由(1)可知与关于直线对称,当共线时,取得最小值【点睛】本题考查了作轴对称图形,轴对称的性质,掌握轴对称的性质是解题的关键