2021-2022学年度京改版八年级数学下册第十四章一次函数难点解析试题.docx
-
资源ID:28171706
资源大小:377.79KB
全文页数:26页
- 资源格式: DOCX
下载积分:9金币
快捷下载

会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年度京改版八年级数学下册第十四章一次函数难点解析试题.docx
京改版八年级数学下册第十四章一次函数难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、点A(-3,1)到y轴的距离是()个单位长度A-3B1C-1D32、已知一次函数yaxb(a0)的图象经过点(0,1)和(1,3),则ba的值为( )A1B0C1D23、函数的图象如下图所示:其中、为常数由学习函数的经验,可以推断常数、的值满足( )A,B,C,D,4、用m元钱在网上书店恰好可购买100本书,但是每本书需另加邮寄费6角,购买n本书共需费用y元,则可列出关系式( )Ay=n(+0.6)By=n()+0.6Cy=n(+0.6)Dy=n()+0.65、在平面直角坐标系中,已知点P(5,5),则点P在( )A第一象限B第二象限C第三象限D第四象限6、已知点(4,y1)、(2,y2)都在直线yx+b上,则y1和y2的大小关系是( )Ay1y2By1y2Cy1y2D无法确定7、一次函数ykxm,y随x的增大而增大,且km0,则在坐标系中它的大致图象是( )ABCD8、甲、乙两地相距120千米,A车从甲地到乙地,B车从乙地到甲地,A车的速度为60千米/小时,B车的速度为90千米/小时,A,B两车同时出发设A车的行驶时间为x(小时),两车之间的路程为y(千米),则能大致表示y与x之间函数关系的图象是()A BC D9、已知4个正比例函数yk1x,yk2x,yk3x,yk4x的图象如图,则下列结论成立的是()Ak1k2k3k4Bk1k2k4k3Ck2k1k3k4Dk4k3k2k110、正比例函数ykx的图象经过一、三象限,则一次函数ykxk的图象大致是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点A的坐标为,点B的坐标为,点P在y轴上,当的值最小时,P的坐标是_2、先设出_,再根据条件确定解析式中_,从而得出函数解析式的方法,叫待定系数法3、一次函数y1axb与y2mxn的部分自变量和对应函数值如下表:x0123y121x0123y23113则关于x的方程axmxnb的解是_4、将一次函数的图像沿x轴向左平移4个单位长度,所得到的图像对应的函数表达式是_5、一次函数与的图象如图所示,则关于、的方程组的解是_三、解答题(5小题,每小题10分,共计50分)1、如图1,A(2,6),C(6,2),ABy轴于点B,CDx轴于点D(1)求证:AOBCOD;(2)如图2,连接AC,BD交于点P,求证:点P为AC中点;(3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EFEFCE且EFCE,点G为AF中点连接EG,EO,求证:OEG45°2、已知一次函数(1)画出函数图象(2)不等式>0的解集是_;不等式<0的解集是_(3)求出函数图象与坐标轴的两个交点之间的距离3、如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4)(1)求对角线AB所在直线的函数关系式;(2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;(3)若点P是直线AB上的一个动点,当PAM的面积与长方形OACB的面积相等时,求点P的坐标4、汽车在发动后的前10秒内以匀加速a=0.8m/s2行驶,这10s内,经过t(s)汽车行驶的路程为s=at2(1)求t=2.5s和3.5s时,汽车所行驶的路程(2)汽车在发动后行驶10m,15m所需的时间各为多少? (精确到0.1)5、疫情期间,乐清市某医药公司计划购进N95型和一次性成人口罩两种款式若购进N95型10箱和一次性成人口罩20箱,需要32500元;若购进N95型30箱和一次性成人口罩40箱,需要87500元 (1)N95型和一次性成人口罩每箱进价分别为多少元? (2)由于疫情严峻急需口罩,老板决定再次购进N95型和一次性成人口罩共80箱,口罩工厂对两种产品进行了价格调整,N95型的每箱进价比第一次购进时提高了10%,一次性成人口罩的每箱进价按第一次进价的八折;如果药店此次用于购进N95型和一次性成人口罩两种型号的总费用不超过115000元,则最多可购进N95型多少箱? (3)若销售一箱N95型,可获利500元;销售一箱一次性成人口罩,可获利100元,在(2)的条件下,如何进货可使再次购进的口罩获得最大的利润?最大的利润是多少?-参考答案-一、单选题1、D【解析】【分析】由点到轴的距离等于该点坐标横坐标的绝对值,可以得出结果【详解】解:由题意知到轴的距离为到轴的距离是个单位长度故选D【点睛】本题考察了点到坐标轴的距离解题的关键在于明确距离的求解方法距离为正值是易错点解题技巧:点到轴的距离=;到轴的距离=2、A【解析】【分析】用待定系数法求出函数解析式,即可求出a和b的值,进而可求出代数式的值【详解】解:把点(0,1)和(1,3)代入yax+b,得:,解得,ba121故选:A【点睛】本题主要考查待定系数法求一次函数解析式,了解一次函数图象上点的坐标代入函数解析式是解题关键3、B【解析】【分析】由题意根据图象可知,当x0时,y0,可知a0;x=b时,函数值不存在,则b0.【详解】解:由图象可知,当x0时,y0,ax0,a0;x=b时,函数值不存在,即xb,结合图象可以知道函数的x取不到的值大概是在1的位置,b0故选:B【点睛】本题考查函数的图象性质,能够通过已学的反比例函数图象确定b的取值是解题的关键4、A【解析】【分析】由题意可得每本书的价格为元,再根据每本书需另加邮寄费6角即可得出答案;【详解】解:因为用m元钱在网上书店恰好可购买100本书,所以每本书的价格为元,又因为每本书需另加邮寄费6角,所以购买n本书共需费用y=n(+0.6)元;故选:A【点睛】本题考查了列代数式和用关系式表示变量之间的关系,正确理解题意、得到每本书的价格是关键5、D【解析】【分析】根据各象限内点的坐标特征解答即可【详解】解:点P(5,-5)的横坐标大于0,纵坐标小于0,所以点P所在的象限是第四象限故选:D【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)6、A【解析】【分析】由题意直接根据一次函数的性质进行分析即可得到结论【详解】解:直线yx+b中,k0,y将随x的增大而减小42,y1y2故选:A【点睛】本题考查一次函数的图象性质,注意掌握对于一次函数y=kx+b(k0),当k0,y随x增大而增大;当k0时,y将随x的增大而减小7、B【解析】【分析】根据一次函数的性质以及有理数乘法的性质,求得、的符号,即可求解【详解】解:一次函数ykxm,y随x的增大而增大,可得,可得,则一次函数ykxm,经过一、三、四象限,故选:B【点睛】本题考查的是一次函数的图象与系数的关系,涉及了一次函数的增减性,有理数乘法的性质,解题的关键是掌握一次函数的有关性质以及有理数乘法的性质,正确判断出、的符号8、C【解析】【分析】分别求出两车相遇、B车到达甲地、A车到达乙地时间,分0x、x、x2三段求出函数关系式,进而得到当x=时,y=80,结合函数图象即可求解【详解】解:当两车相遇时,所用时间为120÷(60+90)=小时, B车到达甲地时间为120÷90=小时,A车到达乙地时间为120÷60=2小时,当0x时,y=120-60x-90x=-150x+120;当x时,y=60(x-)+90(x-)=150x-120;当x2是,y=60x;由函数解析式的当x=时,y=150×-120=80故选:C【点睛】本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键9、A【解析】【分析】首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小【详解】解:首先根据直线经过的象限,知:k30,k40,k10,k20,再根据直线越陡,|k|越大,知:|k1|k2|,|k4|k3|则k1k2k3k4,故选:A【点睛】本题主要考查了正比例函数图象的性质,首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小10、A【解析】【分析】由正比例函数的图象经过一、三象限,可以知道,由此,从而得到一次函数图象情况【详解】解:正比例函数ykx的图象经过一、三象限一次函数的图象经过一、二、四象限故选:A【点睛】本题考查一次函数图象,熟记相关知识点并能灵活应用是解题关键二、填空题1、(0,1)【解析】【分析】如图,作点A关于y轴的对称点A,连接BA交y轴于P,连接PA,点P即为所求求出直线BA的解析式即可解决问题;【详解】解:如图,作点A关于y轴的对称点A,连接BA交y轴于P,连接PA,点P即为所求设直线BA的解析式为ykxb,A(1,2),B(2,1),则有:,解得,直线BA的解析式为yx1,令x=0,y=1P(0,1),故答案为:(0,1)【点睛】本题考查轴对称最短问题,一次函数的应用等知识,解题的关键是学会利用轴对称解决最短问题,学会构建一次函数解决交点坐标问题2、 解析式 未知的系数【解析】【分析】根据待定系数法的概念填写即可【详解】解:先设出函数的解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法,叫待定系数法,故答案为:解析式 未知的系数【点睛】本题考查了待定系数法的概念,做题的关键是牢记概念3、【解析】【分析】根据统计表确定两个函数的的交点,然后判断即可【详解】解:根据表可得一次函数y1axb与y2mxn的交点坐标是(2,1)故可得关于x的方程axmxnb的解是,故答案为:【点睛】本题考查了一次函数的性质,正确确定交点坐标是关键4、#y=4+2x【解析】【分析】根据一次函数的平移规律:“上加下减,左加右减”来解题即可【详解】由一次函数的图象沿x轴向左平移4个单位后,得到的图象对应的函数关系式为,化简得:,故答案为:【点睛】此题主要考查了一次函数图象与几何变换,求直线平移后的解析式时要注意一次函数的平移规律:“上加下减,左加右减”5、【解析】【分析】根据一次函数与的图象可知交点的横坐标为,将代入即可求得纵坐标的值,则的值即可为方程组的解【详解】解:一次函数与的图象交点的横坐标为,当,是方程组的解故答案为:【点睛】本题考查了两直线的交点与二元一次方程组的解,数形结合是解题的关键三、解答题1、(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)根据SAS即可证明AOBCOD;(2)过点作CHx轴,交BD于点H,得出ABCHOD,由平行线的性质得BAP=HCP,由轴得DCH=ODC=90°,由AOBCOD得OB=OD,故可得ODB=45°,从而得出CHD=CDH=45°,推出CH=CD=AB,根据AAS证明ABPCHP,得出AP=CP即可得证;(3)延长EG到,使GM=GE,连接AM,OM,延长EF交于点J,根据SAS证明AGMFGE,得出AM=EF,AMG=GEF,故AMEJ,由平行线的性质得出MAO=AJE,进而推出MAO=ECO,根据SAS证明MAOECO,故OM=OE,AOM=EOC,即可证明OEG=45°【详解】(1)ABy轴于点,轴于点,ABO=CDO=90°,A(-2,6),C(6,2),AB=CD=2,OB=OD=6,AOBCOD(SAS);(2)如图2,过点作CHx轴,交BD于点H,ABCHOD,BAP=HCP,CDx轴,DCH=ODC=90°,AOBCOD,OB=OD,ODB=45°,CHD=ODB=45°,CDH=90°-45°=45°,CH=CD=AB, 在ABP与CHP中,APB=CPHBAP=HCPAB=CH,ABPCHP(AAS),AP=CP,即点为AC中点;(3)如图3,延长EG到,使GM=GE,连接AM,OM,延长EF交于点J,AG=GF,AGE=FGE,GM=GE,AGMFGE(SAS),AM=EF,AMG=GEF,AMEJ,MAO=AJE,EF=EC,AM=EC,AOC=CEJ=90°,AJE+EJO=180°,EJO+ECO=180°,AJE=ECO,MAO=ECO,AO=CO,MAOECO(SAS),OM=OE,AOM=EOC,MOE=AOC=90°,MEO=45°,即OEG=45°【点睛】本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键2、(1)见解析;(2)x<-3;x>-3;(3)BC=35【解析】【分析】(1)分别将x=0、y=0代入一次函数y=-2x-6,求出与之相对应的y、x值,由此即可得出点A、B的坐标,连点成线即可画出函数图象;(2)根据一次函数图象与x轴的上下位置关系,即可得出不等式的解集;(3)由点A、B的坐标即可得出OA、OB的长度,再根据勾股定理即可得出结论(或者直接用两点间的距离公式也可求出结论)【详解】(1)当x=0时,y=-2x-6=-6,一次函数y=-2x-6与y轴交点C的坐标为(0,-6);当y=-2x-6=0时,解得:x=-3,一次函数y=-2x-6与x轴交点B的坐标为(-3,0)描点连线画出函数图象,如图所示(2)观察图象可知:当x<-3时,一次函数y=-2x-6的图象在x轴上方;当x>-3时,一次函数y=-2x-6的图象在x轴下方不等式-2x-6>0的解集是x<-3;不等式-2x-6<0的解集是x>-3故答案是:x-3,x-3;(3)B(-3,0),C(0,-6),OB=3,OC=6,BC=OB2+OC2=35【点睛】本题考查了一次函数与一元一次不等式、一次函数图象以及勾股定理,解题的关键是:(1)找出一次函数与坐标轴的交点坐标;(2)根据一次函数图象与x轴的上下位置关系找出不等式的解集;(3)利用勾股定理求出直角三角形斜边长度3、(1);(2)5;(3)点P的坐标为(,445)或(,845)【解析】【分析】(1)由坐标系中点的意义结合图形可得出A、B点的坐标,设出对角线AB所在直线的函数关系式,由待定系数法即可求得结论;(2)由勾股定理求出AB的长,再结合线段垂直平分线的性质,可得AMBM,OMOBBM,再次利用勾股定理得出AM的长;(3)(方法一)先求出直线AM的解析式,设出P点坐标,由点到直线的距离求出AM边上的高h,再结合三角形面积公式与长方形面积公式即可求出P点坐标;(方法二)由PAM的面积与长方形OACB的面积相等可得出SPAM的值,设点P的坐标为(x,x4),分点P在AM的右侧及左侧两种情况,找出关于x的一元一次方程,解之即可得出点P的坐标,此题得解【详解】解:(1)四边形AOBC为长方形,且点C的坐标是(8,4),AOCB4,OBAC8,A点坐标为(0,4),B点坐标为(8,0)设对角线AB所在直线的函数关系式为ykxb,则有4=b0=8k+b,解得:,对角线AB所在直线的函数关系式为yx4(2)AOB90°,勾股定理得:ABAO2+OB245,MN垂直平分AB,BNANAB25MN为线段AB的垂直平分线,AMBM设AMa,则BMa,OM8a,由勾股定理得,a242(8a)2,解得a5,即AM5(3)(方法一)OM3,点M坐标为(3,0)又点A坐标为(0,4),直线AM的解析式为yx4点P在直线AB:yx4上,设P点坐标为(m,m4),点P到直线AM:xy40的距离h43m-12m+4-4432+12m2PAM的面积SPAMAMh|m|SOABCAOOB32,解得m± ,故点P的坐标为(,445)或(,845)(方法二)S长方形OACB8×432,SPAM32设点P的坐标为(x,x4)当点P在AM右侧时,SPAMMB(yAyP)×5×(4x4)32,解得:x,点P的坐标为(,445);当点P在AM左侧时,SPAMSPMBSABMMByP10×5(x4)1032,解得:x,点P的坐标为(,845)综上所述,点P的坐标为(,445)或(,845)【点睛】本题考查了坐标系中点的意、勾股定理、点到直线的距离、三角形和长方形的面积公式,解题的关键:(1)根据坐标系中点的意义,找到A、B点的坐标;(2)由线段垂直平分线的性质和勾股定理找出BM的长度;(3)(方法一)结合点到直线的距离、三角形和长方形的面积公式找到关于m的一元一次方程;(方法二)利用分割图形求面积法找出关于x的一元一次方程本题属于中等题,难度不大,运算量不小,这里尤其要注意点P有两个4、(1)2.5,4.9;(2)5,6.1【解析】【分析】(1)根据公式,得函数解析式,根据自变量的值,得函数值(2)根据函数值,得相应的自变量的值【详解】(1)s=at2,s=×0.8t2=25t2当t=2.5时,s=25×2.52=2.5(m),当t=3.5时,s=25×3.52=4.9(m)(2)当s=10时, 25t2=10,解得t=5(s),当s=15时, 25t2=15,解得t6.1(s)【点睛】本题考查了函数值,利用了函数的自变量与函数值的对应关系5、(1)N95型和一次性成人口罩每箱进价分别为2250元、500元;(2)最多可购进N95型40箱;(3)采购N95型40个,一次性成人口罩40个可获得最利润为24000元【解析】【分析】(1)设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得10x+20y=32500,30x+40y=87500,联立求解即可; (2)设购进N95型a箱,依题意得:2250×(1+10%)a+500×80%×(80-a)115000,求出a的范围,结合a为正整数可得a的最大值; (3)设购进的口罩获得最大的利润为w,依题意得:w500a+100(80-a),然后对其进行化简,结合一次函数的性质进行解答【详解】(1)解:设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得: 10x+20y=3250030x+40y=87500 ,解得: x=2250y=500 ,答:N95型和一次性成人口罩每箱进价分别为2250元、500元(2)解:设购进N95型a箱,则一次性成人口罩为(80a)套,依题意得: 2250(1+10%)a+500×80%(80a)115000 解得:a40a取正整数,0a40a的最大值为40答:最多可购进N95型40箱(3)解:设购进的口罩获得最大的利润为w, 则依题意得:w500a+100(80a)400a+8000,又0a40,w随a的增大而增大,当a40时,W400×40+800024000元即采购N95型40个,一次性成人口罩40个可获得最利润为24000元答:最大利润为24000元【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,找出w关于a的函数关系式