2021-2022学年2022年沪科版九年级数学下册期末测评-A卷(含答案及详解).docx
-
资源ID:28172317
资源大小:1.02MB
全文页数:35页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年2022年沪科版九年级数学下册期末测评-A卷(含答案及详解).docx
· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·2022年沪科版九年级数学下册期末测评 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB为的直径,劣弧BC的长是劣弧BD长的2倍,则AC的长为( )ABC3D2、如图,在ABC中,BAC130°,将ABC绕点C逆时针旋转得到DEC,点A,B的对应点分别为D,E,连接AD当点A,D,E在同一条直线上时,则BAD的大小是()A80°B70°C60°D50°3、往直径为78cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为( )A36 cmB27 cmC24 cmD15 cm4、下列事件是必然发生的事件是( )A在地球上,上抛的篮球一定会下落B明天的气温一定比今天高C中秋节晚上一定能看到月亮D某彩票中奖率是1%,买100张彩票一定中奖一张5、中国有悠久的金石文化,印信是金石文化的代表之一南北朝时期的官员独孤信的印信是迄今发现的中国古代唯一一枚楷书印它的表面均由正方形和等边三角形组成(如图1),可以看成图2所示的几何体从正面看该几何体得到的平面图形是( )· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·ABCD6、下列语句判断正确的是()A等边三角形是轴对称图形,但不是中心对称图形B等边三角形既是轴对称图形,又是中心对称图形C等边三角形是中心对称图形,但不是轴对称图形D等边三角形既不是轴对称图形,也不是中心对称图形7、如图是由几个小立方体所搭成的几何体从上面看到的平面图形,小正方形中的数字表示在该位置小立方体的个数,则这个几何体从正面看到的平面图形为( )ABCD8、抛一枚质地均匀的硬币三次,其中“至少有两次正面朝上”的概率是()ABCD9、如图,点A、B、C在上,则的度数是( )A100°B50°C40°D25°10、如图,为正六边形边上一动点,点从点出发,沿六边形的边以1cm/s的速度按逆时针方向运动,运动到点停止设点的运动时间为,以点、为顶点的三角形的面积是,则下列图像能大致反映与的函数关系的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·1、如图,在RtABC,B=90°,AB=BC=1,将ABC绕着点C逆时针旋转60°,得到MNC,那么BM=_2、如图,在平面直角坐标系xOy中,P为x轴正半轴上一点已知点,为的外接圆(1)点M的纵坐标为_;(2)当最大时,点P的坐标为_3、在平面直角坐标系中,点,圆C与x轴相切于点A,过A作一条直线与圆交于A,B两点,AB中点为M,则OM的最大值为_4、平面直角坐标系中,A为x轴上一动点,连接AC,将AC绕A点顺时针旋转90°得到AB,当BK取最小值时,点B的坐标为_5、如图,在O中,A,B,C是O上三点,如果AOB=70º,那么C的度数为_三、解答题(5小题,每小题10分,共计50分)1、将锐角为45°的直角三角板MPN的一个锐角顶点P与正方形ABCD的顶点A重合,正方形ABCD固定不动,然后将三角板绕着点A旋转,MPN的两边分别与正方形的边BC、DC或其所在直线相交于点E、F,连接EF(1)在三角板旋转过程中,当MPN的两边分别与正方形的边CB、DC相交时,如图1所示,请直接写出线段BE、DF、EF满足的数量关系;(2)在三角板旋转过程中,当MPN的两边分别与正方形的边CB、DC的延长线相交时,如图2所示,请直接写出线段BE、DF、EF满足的数量关系;(3)若正方形的边长为4,在三角板旋转过程中,当MPN的一边恰好经过BC边的中点时,试求线段EF的长· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·2、如图,在直角坐标平面内,已知点A的坐标(2,0)(1)图中点B的坐标是_;(2)点B关于原点对称的点C的坐标是_;点A关于y轴对称的点D的坐标是_;(3)四边形ABDC的面积是_;(4)在y轴上找一点F,使,那么点F的所有可能位置是_3、如图,AB是O的直径,点D,E在O上,四边形BDEO是平行四边形,过点D作交AE的延长线于点C(1)求证:CD是O的切线(2)若,求阴影部分的面积4、随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种最喜欢的支付方式现将调查结果进行统计并绘制成如下两幅不完整的统计图请结合图中所给的信息解答下列问题:(1)这次活动共调查了_人,并补充完整条形统计图;(2)在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为_;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种方式中选一种方式进行支付,请用画树状图或列表的方法,求出两人恰好选择同一种支付方式的概率5、如图,ABC是O的内接三角形,连接AO并延长交O于点D,过点C作O的切线,与BA的延长线相交于点E(1)求证:ADEC;(2)若AD6,求线段AE的长· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·-参考答案-一、单选题1、D【分析】连接,根据求得半径,进而根据的长,勾股定理的逆定理证明,根据弧长关系可得,即可证明是等边三角形,求得,进而由勾股定理即可求得【详解】如图,连接, ,是直角三角形,且是等边三角形是直径,故选D【点睛】本题考查了弧与圆心角的关系,直径所对的圆周角是90度,勾股定理,等边三角形的判定,求得的长是解题的关键2、A【分析】根据三角形旋转得出,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到DAC=50°,由此即可求解【详解】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·证明:绕点C逆时针旋转得到,ADC=DAC,点A,D,E在同一条直线上,DAC=50°,BAD=BAC-DAC=80°故选A【点睛】本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质3、C【分析】连接,过点作于点,交于点,先由垂径定理求出的长,再根据勾股定理求出的长,进而得出的长即可【详解】解:连接,过点作于点,交于点,如图所示:则,的直径为,在中,即水的最大深度为,故选:C【点睛】本题考查了垂径定理、勾股定理等知识,解题的关键是根据题意作出辅助线,构造出直角三角形是解答此题的关键4、A【分析】根据必然事件的概念(必然事件指在一定条件下一定发生的事件)可判断正确答案【详解】解:A、在地球上,上抛的篮球一定会下落是必然事件,符合题意;B、明天的气温一定比今天的高,是随机事件,不符合题意;C、中秋节晚上一定能看到月亮,是随机事件,不符合题意;D、某彩票中奖率是1%,买100张彩票一定中奖一张,是随机事件,不符合题意故选:A【点睛】本题考查了必然事件的概念,解决本题需要正确理解必然事件、不可能事件、随机事件的概念关键是理解必然事件指在一定条件下一定发生的事件5、D【分析】找到从正面看所得到的图形即可· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·【详解】解:从正面看是一个正六边形,里面有2个矩形,故选D【点睛】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力,难度适中6、A【分析】根据等边三角形的对称性判断即可【详解】等边三角形是轴对称图形,但不是中心对称图形,B,C,D都不符合题意;故选:A【点睛】本题考查了等边三角形的对称性,熟练掌握等边三角形的对称性是解题的关键7、B【分析】几何体从上面看到的每个数字是该位置小立方体的个数,可得从正面看共有3列,2层,从左往右的每列的小立方体的个数为1,2,1,从上往下的每层的小立方体的个数为1,3,即可求解【详解】解:几何体从上面看到的每个数字是该位置小立方体的个数,可得从正面看共有3列,2层,从左往右每列的小立方体的个数为1,2,1,从上往下每层的小立方体的个数为1,3,所以这个几何体从正面看到的平面图形为故选:B【点睛】本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)从正面看:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)从侧面看:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)从上面看:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键8、B【分析】根据随机掷一枚质地均匀的硬币三次,可以分别假设出三次情况,画出树状图即可【详解】解:随机掷一枚质地均匀的硬币三次,根据树状图可知至少有两次正面朝上的事件次数为:4,总的情况为8次,故至少有两次正面朝上的事件概率是:故选:B【点睛】本题主要考查了树状图法求概率,解题的关键是根据题意画出树状图· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·9、C【分析】先根据圆周角定理求出AOB的度数,再由等腰三角形的性质即可得出结论【详解】ACB=50°,AOB=100°,OA=OB,OAB=OBA= 40°,故选:C【点睛】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半10、A【分析】设正六边形的边长为1,当在上时,过作于 而 求解此时的函数解析式,当在上时,延长交于点 过作于 并求解此时的函数解析式,当在上时,连接 并求解此时的函数解析式,由正六边形的对称性可得:在上的图象与在上的图象是对称的,在上的图象与在上的图象是对称的,从而可得答案.【详解】解:设正六边形的边长为1,当在上时,过作于 而 当在上时,延长交于点 过作于 同理: 则为等边三角形, 当在上时,连接 · · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·由正六边形的性质可得: 由正六边形的对称性可得: 而 由正六边形的对称性可得:在上的图象与在上的图象是对称的,在上的图象与在上的图象是对称的,所以符合题意的是A,故选A【点睛】本题考查的是动点问题的函数图象,锐角三角函数的应用,正多边形的性质,清晰的分类讨论是解本题的关键.二、填空题1、【分析】设BN与AC交于D,过M作MFBA于F,过M作MEBC于E,连接AM,先证明EMCFMA得ME=MF,从而可得CBD=45°,CDB=180°-BCA-CBD=90°,再在RtBCD、RtCDM中,分别求出BD和DM,即可得到答案【详解】解:设BN与AC交于D,过M作MFBA于F,过M作MEBC于E,连接AM,如图:ABC绕着点C逆时针旋转60°,ACM=60°,CA=CM,ACM是等边三角形,CM=AM,ACM=MAC=60°,B=90°,AB=BC=1,BCA=CAB=45°,AC=CM,BCM=BCA+ACM=105°,BAM=CAB+MAC=105°,ECM=MAF=75°,MFBA,MEBC,E=F=90°,由得EMCFMA,ME=MF,而MFBA,MEBC,BM平分EBF,CBD=45°,CDB=180°-BCA-CBD=90°,RtBCD中,BD=BC=,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·RtCDM中,DM=CM =,BM=BD+DM=,故答案为:【点睛】本题考查等腰三角形性质、等边三角形的性质及判定,解题的关键是证明CDB=90°2、5 (4,0) 【分析】(1)根据点M在线段AB的垂直平分线上求解即可;(2)点P在M切点处时,最大,而四边形OPMD是矩形,由勾股定理求解即可【详解】解:(1)M为ABP的外接圆,点M在线段AB的垂直平分线上,A(0,2),B(0,8),点M的纵坐标为:,故答案为:5;(2)过点,作M与x轴相切,则点M在切点处时,最大,理由:若点是x轴正半轴上异于切点P的任意一点,设交M于点E,连接AE,则AEB=APB,AEB是AE的外角,AEB>AB,APB>AB,即点P在切点处时,APB最大,M经过点A(0,2)、B(0,8),点M在线段AB的垂直平分线上,即点M在直线y=5上,M与x轴相切于点P,Px轴,从而MP=5,即M的半径为5,设AB的中点为D,连接MD、AM,如上图,则MDAB,AD=BD=AB=3,BM=MP=5,而POD=90°,四边形OPMD是矩形,从而OP=MD,由勾股定理,得MD=,OP=MD=4,点P的坐标为(4,0),故答案为:(4,0)【点睛】本题考查了切线的性质,线段垂直平分线的性质,矩形的判定及勾股定理,正确作出图形是解题的关· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·键3、#【分析】如图所示,取D(-2,0),连接BD,连接CD与圆C交于点,先求出A点坐标,从而可证OM是ABD的中位线,得到,则当BD最小时,OM也最小,即当B运动到时,BD有最小值,由此求解即可【详解】解:如图所示,取D(-2,0),连接BD,连接CD与圆C交于点点C的坐标为(2,2),圆C与x轴相切于点A,点A的坐标为(2,0),OA=OD=2,即O是AD的中点,又M是AB的中点, OM是ABD的中位线,当BD最小时,OM也最小,当B运动到时,BD有最小值,C(2,2),D(-2,0),故答案为:【点睛】本题主要考查了坐标与图形,一点到圆上一点的距离得到最小值,两点距离公式,三角形中位线定理,把求出OM的最小值转换成求BD的最小值是解题的关键4、【分析】如图,作BHx轴于H由ACOBAH(AAS),推出BHOAm,AHOC4,可得B(m+4,m),令xm+4,ym,推出yx4,推出点B在直线yx4上运动,设直线yx4交x轴于E,交y轴于F,作KMEF于M,根据垂线段最短可知,当点B与点M重合时,BK的值最小,利用等腰直角三角形的性质可得M的坐标,从而可得答案【详解】解:如图,作BHx轴于H· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·C(0,4),K(2,0),OC4,OK2,ACAB,AOCCABAHB90°,CAO+OCA90°,BAH+CAO90°,ACOBAH,ACOBAH(AAS),BHOAm,AHOC4,B(m+4,m),令xm+4,ym,yx4,点B在直线yx4上运动,设直线yx4交x轴于E,交y轴于F,则 作KMEF于M,过作于 则 根据垂线段最短可知,当点B与点M重合时,BK的值最小,此时B(3,1),故答案为:(3,1)【点睛】本题考查坐标与图形的变化旋转,全等三角形的判定和性质,一次函数的应用,垂线段最短等知识,解题的关键是正确寻找点B的运动轨迹,学会利用垂线段最短解决最短问题5、35°【分析】利用圆周角定理求出所求角度数即可【详解】解:与都对,且,故答案为:【点睛】本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理三、解答题1、(1)EF=DF+BE;(2)EF=DF-BE;(3)线段EF的长为或【分析】(1)延长FD至G,使DG=BE,连接AG,先证ABEADG,再证GAFEAF即可;(2)在DC上截取DH=BE,连接AH,先证ADHABE,再证HAFEAF即可;(3)分两种情形分别求解即可解决问题· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·【详解】解:(1)结论:EF=BE+DF理由:延长FD至G,使DG=BE,连接AG,如图,ABCD是正方形,AB=AD,ABE=ADG=DAB=90°,ABEADG(AAS),AE=AG,DAG=EAB,EAF=45°,DAF+EAB=45°,DAF+DAG=45°,GAF=EAF=45°,AF=AF,GAFEAF(AAS),EF=GF,GF=DF+DG=DF+BE,即:EF=DF+BE;(2)结论:EF=DF-BE理由:在DC上截取DH=BE,连接AH,如图,AD=AB,ADH=ABE=90°,ADHABE(SAS),AH=AE,DAH=EAB,EAF=EAB+BAF=45°,DAH+BAF=45°,HAF=45°=EAF,AF=AF,HAFEAF(SAS),HF=EF,DF=DH+HF,EF=DF-BE;(3)当MA经过BC的中点E时,同(1)作辅助线,如图:· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·设FD=x,由(1)的结论得FG=EF=2+x,FC=4-x在RtEFC中,(x+2)2=(4-x)2+22,x=,EF=x+2=当NA经过BC的中点G时,同(2)作辅助线,设BE=x,由(2)的结论得EC=4+x,EF=FH,K为BC边的中点,CK=BC=2,同理可证ABKFCK(SAS),CF=AB=4,EF=FH=CF+CD-DH=8-x,在RtEFC中,由勾股定理得到:(4+x)2+42=(8-x)2,x=,EF=8-=综上,线段EF的长为或【点睛】本题属于四边形综合题,考查了正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题2、(1)(3,4)(2)(3,4),(2,0)(3)16(4)(0,4)或(0,4)【分析】(1)根据坐标的定义,判定即可;(2)根据原点对称,y轴对称的点的坐标特点计算即可;(3)把四边形的面积分割成三角形的面积计算;(4)根据面积相等,确定OF的长,从而确定坐标· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(1)过点B作x轴的垂线,垂足所对应的数为3,因此点B的横坐标为3,过点B作y轴的垂线,垂足所对应的数为4,因此点B的纵坐标为4,所以点B(3,4);故答案为:(3,4);(2)由于关于原点对称的两个点坐标纵横坐标均为互为相反数,所以点B(3,4)关于原点对称点C(3,4),由于关于y轴对称的两个点,其横坐标互为相反数,其纵坐标不变,所以点A(2,0)关于y轴对称点D(2,0),故答案为:(3,4),(2,0);(3)2××4×416,故答案为:16;(4)8,ADOF8,OF4,又点F在y轴上,点F(0,4)或(0,4),故答案为:(0,4)或(0,4)【点睛】本题考查了坐标系中对称点的坐标确定,图形的面积计算,正确理解坐标的意义,适当分割图形是解题的关键3、(1)见详解;(2)【分析】(1)连接OD,由题意易得,则有ODB是等边三角形,然后可得AEO也为等边三角形,进而可得ODAC,最后问题可求证;(2)由(1)易得AE=ED,CED=OBD=60°,然后可得圆O的半径,进而可得扇形OED和OED的面积,则有弓形ED的面积,最后问题可求解【详解】(1)证明:连接OD,如图所示:四边形BDEO是平行四边形,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·ODB是等边三角形,OBD=BOD=60°,AOE=OBD=60°,OE=OA,AEO也为等边三角形,EAO=DOB=60°,AEOD,ODC+C=180°,CDAE,C=90°,ODC=90°,OD是圆O的半径,CD是O的切线(2)解:由(1)得EAO=AOE=OBD=BOD=60°,EDAB,EAO=CED=60°,AOE+EOD+BOD=180°,EOD=60°,DEO为等边三角形, ED=OE=AE,CDAE,CED=60°,CDE=30°,设OED的高为h,【点睛】本题主要考查扇形面积公式、切线的判定定理及解直角三角形,熟练掌握扇形面积公式、切线的判定定理及解直角三角形是解题的关键4、(1)200;补图见解析;(2)81°;(3)【分析】(1)根据使用支付方式为银行卡的占比为15%,人数为30人即可求得总人数,根据微信支付所占的百分比为乘以总人数即可求得,根据总人数减去微信支付,银行卡,现金,其他方式支付的人数即可求得支付宝支付的人数;(2)先求得支付宝支付的人数所占比乘以360°即可求得扇形圆心角的度数;(3)根据列表法求概率即可【详解】解:(1)(人)故答案为:200其中使用微信支付的有:(人)· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·使用支付宝支付的有:(人)(2)故答案为:81°(3)将微信记为A,支付宝记为B,银行卡记为C,列表格如下:ABCABC共有9种等可能性的结果,其中两人恰好选择同一种支付方式的结果有3种,则P(两人恰好选择同一种支付方式)【点睛】本题考查了扇形统计图与条形统计